Logo Header
  1. Môn Toán
  2. Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Bài 1.18 trang 22 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hãy cùng khám phá lời giải chi tiết của bài 1.18 này ngay dưới đây!

Một cửa hàng cho thuê xe ô tô tự lái. Chi phí cửa hàng phải tiêu tốn cho một chiếc xe là a triệu đồng/ngày. Mỗi chiếc xe được cho thuê thì cửa hàng thu về được 1 triệu đồng/ngày. Biết rằng nhu cầu cho thuê trong một ngày là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau: a) Giả sử cửa hàng có 3 chiếc ô tô cho thuê. Gọi Y là số tiền cửa hàng thu được trong 1 ngày. Lập bảng phân bố xác suất của Y. Hỏi trung bình một ngày của hàng thu được bao nhiêu tiền từ việc cho thuê xe? b) G

Đề bài

Một cửa hàng cho thuê xe ô tô tự lái. Chi phí cửa hàng phải tiêu tốn cho một chiếc xe là a triệu đồng/ngày. Mỗi chiếc xe được cho thuê thì cửa hàng thu về được 1 triệu đồng/ngày. Biết rằng nhu cầu cho thuê trong một ngày là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau:

Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

a) Giả sử cửa hàng có 3 chiếc ô tô cho thuê. Gọi Y là số tiền cửa hàng thu được trong 1 ngày. Lập bảng phân bố xác suất của Y. Hỏi trung bình một ngày của hàng thu được bao nhiêu tiền từ việc cho thuê xe?

b) Giả sử cửa hàng có 4 chiếc ô tô cho thuê. Gọi Z là số tiền cửa hàng thu được trong 1 ngày. Lập bảng phân bố xác suất của Z. Hỏi trung bình một ngày cửa hàng thu được bao nhiêu tiền từ việc cho thuê xe?

c) Với giá trị nào của a thì cửa hàng chỉ nên duy trì 3 xe ô tô cho thuê?

Phương pháp giải - Xem chi tiếtGiải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức 2

Sử dụng các công thức về phân bố nhị thức, tính kì vọng

Lời giải chi tiết

a) Mỗi ngày cửa hàng phải bỏ ra chi phí là \(3a\) triệu đồng. Giả sử mỗi người đến thuê một chiếc xe

\(\begin{array}{l}P(X = 0) = P(Y = - 3a) = 0,0608\\P(X = 1) = P(Y = 1 - 3a) = 0,1703\\P(X = 2) = P(Y = 2 - 3a) = 0,2384\end{array}\)

Cửa hàng có từ 3 hoặc 4 người đến thuê với xác suất là: 0,2225+0,308=0,5305

Mà cửa hàng chỉ có 3 chiếc xe cho thuê nên số tiền cửa hàng thu được là \(3 - 3a\) triệu đồng.

Bảng phân bố xác suất của Y là:

Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức 3

Số tiền trung bình cửa hàng thu được là:

\(E(Y) = 0,0608.( - 3a) + 0,1703.(1 - 3a) + 0,2384.(2 - 3a) + 0,5305(3 - 3a) = 2,2386 - 3a\) (triệu đồng)

b) Mỗi ngày cửa hàng phải bỏ ra chi phí là \(4a\) triệu đồng. Giả sử mỗi người đến thuê một chiếc xe

\(\begin{array}{l}P(X = 0) = P(Y = - 4a) = 0,0608\\P(X = 1) = P(Y = 1 - 4a) = 0,1703\\P(X = 2) = P(Y = 2 - 4a) = 0,2384\\P(X = 3) = P(Y = 3 - 4a) = 0,2225\\P(X = 4) = P(Y = 4 - 4a) = 0,308\end{array}\)

Bảng phân bố xác suất của Z là:

Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức 4

Số tiền trung bình cửa hàng thu được là:

\(\begin{array}{l}E(Y) = 0,0608.( - 4a) + 0,1703.(1 - 4a) + 0,2384.(2 - 4a) + 0,225(3 - 4a) + 0,308(4 - 4a)\\{\rm{ }} = 2,5466 - 4a\end{array}\)

(triệu đồng)

c) Cửa hàng chỉ nên duy trì 3 xe cho thuê nếu \(E(Y) > E(Z)\)

\(2,2386 - 3a > 2,5466 - 4a \Leftrightarrow a > 0,308\) (triệu đồng)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc khảo sát hàm số. Để giải bài toán này một cách hiệu quả, chúng ta cần thực hiện các bước sau:

1. Xác định hàm số và tập xác định

Đầu tiên, cần xác định rõ hàm số được đề cập trong bài toán và xác định tập xác định của hàm số đó. Việc này giúp chúng ta giới hạn phạm vi nghiên cứu và tránh các lỗi sai không đáng có.

2. Tính đạo hàm cấp nhất và tìm điểm cực trị

Tiếp theo, chúng ta cần tính đạo hàm cấp nhất của hàm số và tìm các điểm cực trị. Điểm cực trị là những điểm mà tại đó đạo hàm cấp nhất bằng 0 hoặc không tồn tại. Việc tìm điểm cực trị giúp chúng ta xác định các điểm cao nhất và thấp nhất của hàm số.

3. Lập bảng biến thiên

Bảng biến thiên là một công cụ hữu ích để theo dõi sự thay đổi của hàm số trên các khoảng khác nhau. Bảng biến thiên giúp chúng ta xác định các khoảng đồng biến, nghịch biến, cực đại, cực tiểu của hàm số.

4. Khảo sát tính đơn điệu của hàm số

Dựa vào bảng biến thiên, chúng ta có thể khảo sát tính đơn điệu của hàm số trên các khoảng khác nhau. Hàm số được gọi là đồng biến trên một khoảng nếu đạo hàm cấp nhất của nó dương trên khoảng đó, và nghịch biến nếu đạo hàm cấp nhất âm.

5. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng cho trước

Nếu bài toán yêu cầu tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng cho trước, chúng ta cần xét các giá trị của hàm số tại các điểm cực trị và tại các đầu mút của khoảng đó.

Ví dụ minh họa

Giả sử hàm số được đề cập trong bài toán là f(x) = x^3 - 3x^2 + 2. Để giải bài toán này, chúng ta thực hiện các bước sau:

  1. Xác định hàm số và tập xác định: f(x) = x^3 - 3x^2 + 2, tập xác định là R.
  2. Tính đạo hàm cấp nhất: f'(x) = 3x^2 - 6x.
  3. Tìm điểm cực trị: Giải phương trình f'(x) = 0, ta được x = 0 và x = 2.
  4. Lập bảng biến thiên:
    x-∞02+∞
    f'(x)+-+
    f(x)
  5. Khảo sát tính đơn điệu: Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).
  6. Kết luận: Hàm số đạt cực đại tại x = 0 với giá trị f(0) = 2, và đạt cực tiểu tại x = 2 với giá trị f(2) = -2.

Lưu ý quan trọng

  • Luôn kiểm tra lại các bước tính toán để tránh sai sót.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.
  • Hiểu rõ bản chất của các khái niệm toán học để áp dụng chúng một cách linh hoạt và sáng tạo.

Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài 1.18 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12