Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 1.6 trang 20 thuộc Chuyên đề học tập Toán 12 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Tại một nhà máy sản xuất linh kiện điện tử, các linh kiện được sắp xếp vào từng hộp một cách độc lập, mỗi hộp 10 linh kiện. Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn. Biết rằng xác suất để nhà máy sản xuất ra một linh kiện điện tử không đạt tiêu chuẩn là 0,01. Hỏi tỉ lệ những hộp linh kiện điện tử loại I là bao nhiêu?
Đề bài
Tại một nhà máy sản xuất linh kiện điện tử, các linh kiện được sắp xếp vào từng hộp một cách độc lập, mỗi hộp 10 linh kiện. Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn. Biết rằng xác suất để nhà máy sản xuất ra một linh kiện điện tử không đạt tiêu chuẩn là 0,01. Hỏi tỉ lệ những hộp linh kiện điện tử loại I là bao nhiêu?
Phương pháp giải - Xem chi tiết
Từ các dữ kiện đề bài ta xác định được biến ngẫu nhiên X có phân bố nhị thức. Ta áp dụng chú ý về phân bố nhị thức sẽ tính được tỉ lệ đề bài.
Lời giải chi tiết
Gọi X là số linh kiện không đạt tiêu chuẩn thì X là một biến ngẫu nhiên có phân bố nhị thức với tham số n = 10, p = 0,01 tức là \(X \sim B\left( {10;0,01} \right)\)
Hộp được xếp loại I nếu hộp đó có nhiều nhất một linh kiện không đạt tiêu chuẩn tức là \(X \le 1\).
Theo chú ý về phân bố nhị thức ta có:
\(P(X \le 1) = C_{10}^0.{(0,01)^0}.{(0,99)^{10}} + C_{10}^1.{(0,01)^1}.{(0,99)^9} \approx 0,996\)
Vậy tỉ lệ những hộp linh kiện điện tử loại I là 99,6%.
Bài 1.6 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích hàm số, tìm cực trị, và khảo sát sự biến thiên của hàm số. Việc nắm vững các khái niệm và kỹ năng liên quan đến đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta tìm các yếu tố như:
Để giải bài 1.6 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức, chúng ta có thể áp dụng các phương pháp sau:
Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước sau:
Khi giải bài 1.6 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức, bạn cần lưu ý những điều sau:
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự sau:
Giải bài 1.6 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức đòi hỏi sự hiểu biết vững chắc về đạo hàm và các phương pháp khảo sát hàm số. Hy vọng rằng, với hướng dẫn chi tiết và ví dụ minh họa trên, bạn đã có thể tự tin giải quyết bài toán này một cách hiệu quả. Chúc bạn học tập tốt!