Bài 2.10 trang 43 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, cùng với các phương pháp giải khác nhau để bạn có thể nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết và các kiến thức liên quan ngay sau đây!
Giả sử (Cleft( x right) = 18{rm{ }}000 + 500x--1,6{x^2} + 0,004{x^3};)(nghìn đồng) là hàm chi phí và (pleft( x right) = 1{rm{ }}500--3x) (nghìn đồng) là hàm cầu của (x) đơn vị một loại hàng hóa nào đó. a) Tìm công thức của hàm lợi nhuận (Pleft( x right)), biết rằng hàm lợi nhuận bằng hiệu của hàm doanh thu và hàm chi phí. b) Tìm mức sản xuất x để lợi nhuận thu được là lớn nhất.
Đề bài
Giả sử \(C\left( x \right) = 18{\rm{ }}000 + 500x--1,6{x^2} + 0,004{x^3}\;\)(nghìn đồng) là hàm chi phí và \(p\left( x \right) = 1{\rm{ }}500--3x\) (nghìn đồng) là hàm cầu của \(x\) đơn vị một loại hàng hóa nào đó.
a) Tìm công thức của hàm lợi nhuận \(P\left( x \right)\), biết rằng hàm lợi nhuận bằng hiệu của hàm doanh thu và hàm chi phí.
b) Tìm mức sản xuất x để lợi nhuận thu được là lớn nhất.
Phương pháp giải - Xem chi tiết
Giải theo 5 bước giải bài toán tối ưu bằng cách sử dụng đạo hàm.
Lời giải chi tiết
Hàm doanh thu của x đơn vị hàng hóa là: \(R(x) = xp(x) = 1500x - 3{x^2}\)
Hàm lợi nhuận là:
\(\begin{array}{l}P\left( x \right) = R\left( x \right)--C\left( x \right) = 1{\rm{ }}500x--3{x^2}--(18{\rm{ }}000 + 500x--1,6{x^2} + 0,004{x^3})\\ = 1{\rm{ }}500x--3{x^2}--18{\rm{ }}000--500x + 1,6{x^2}--0,004{x^3}\\ = --0,004{x^3}--1,4{x^2} + 1{\rm{ }}000x--18{\rm{ }}000.\end{array}\)
b) Xét hàm lợi nhuận P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng) với x ≥ 0.
Ta có P’(x) = –0,012x2 – 2,8x + 1 000.
P’(x) = 0 ⟺ –0,012x2 – 2,8x + 1 000 = 0 ⇔ x ≈ 194,69.
Ta có P(194) = 94 104,064 và P(195) = 94 105,5 nên P(194) < P(105).
Do số đơn vị hàng hóa phải là số nguyên dương nên để lợi nhuận lớn nhất thì mức sản xuất là x = 195 đơn vị hàng hóa.
Bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc tối ưu hóa. Để giải bài toán này một cách hiệu quả, chúng ta cần thực hiện các bước sau:
(Nội dung lời giải chi tiết bài 2.10 sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, các phép tính và giải thích rõ ràng. Ví dụ:)
Đề bài: (Ví dụ: Một người nông dân muốn xây một chuồng trại hình chữ nhật có diện tích 100m2. Hỏi chuồng trại đó cần có kích thước như thế nào để sử dụng ít vật liệu nhất?)
Lời giải:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, bạn có thể tham khảo các bài tập tương tự sau:
Khi giải các bài tập này, bạn nên áp dụng các bước giải đã trình bày ở trên và chú ý đến việc xác định đúng hàm số mục tiêu, tập xác định và các điều kiện ràng buộc của bài toán.
Để học tập và ôn luyện kiến thức về đạo hàm và ứng dụng của đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán thực tế bằng phương pháp đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải đã trình bày, bạn sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.