Chào mừng các em học sinh đến với lời giải chi tiết bài 1.3 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp các giải pháp học tập hiệu quả và chất lượng.
Một túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi. a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính (Eleft( X right).) b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm. Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.
Đề bài
Một túi gồm các tấm thẻ giống hệt nhau chỉ khác màu, trong đó có 10 tấm thẻ màu đỏ và 6 tấm thẻ màu xanh. Rút ngẫu nhiên đồng thời ra 3 tấm thẻ từ trong túi.
a) Gọi X là số thẻ đỏ trong ba thẻ rút ra. Lập bảng phân bố xác suất của X. Tính \(E\left( X \right).\)
b) Giả sử rút mỗi tấm thẻ màu đỏ được 5 điểm và rút mỗi tấm thẻ màu xanh được 8 điểm.
Gọi Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi. Lập bảng phân bố xác suất của Y.
Phương pháp giải - Xem chi tiết
Bước 1: Tính xác suất của các biến cố
Bước 2: Lập bảng phân bố xác suất
Bước 3: Tính \(E\left( X \right)\)theo công thức
Lời giải chi tiết
X là số thẻ đỏ trong ba thẻ rút ra \( \Rightarrow \) Giá trị của X thuộc tập {0; 1; 2; 3}.
Số kết quả có thể là: \(C_{16}^3 = 560\).
Biến cố \(\left\{ {X = 0} \right\}\): “Rút được 3 thẻ xanh”. \( \Rightarrow P\left( {X = 0} \right) = \frac{{C_6^3}}{{C_{16}^3}} = \frac{2}{{56}}\)
Biến cố \(\left\{ {X = 1} \right\}:\) “Rút được 1 thẻ đỏ và 2 thẻ xanh”. \( \Rightarrow P\left( {X = 1} \right) = \frac{{C_{10}^1.C_6^2}}{{C_{16}^3}} = \frac{{15}}{{56}}\)
Biến cố \(\left\{ {X = 2} \right\}:\) “Rút được 2 thẻ đỏ và 1 thẻ xanh”. \( \Rightarrow P\left( {X = 2} \right) = \frac{{C_{10}^2.C_6^1}}{{C_{16}^3}} = \frac{{27}}{{56}}\)
Biến cố \(\left\{ {X = 3} \right\}:\) “Rút được 3 thẻ đỏ”. \( \Rightarrow P\left( {X = 3} \right) = \frac{{C_{10}^3}}{{C_{16}^3}} = \frac{{12}}{{56}}\)
Bảng phân bố xác suất của X là
Ta có: \(E(X) = 0.\frac{2}{{56}} + 1.\frac{{15}}{{56}} + 2.\frac{{27}}{{56}} + 3.\frac{{12}}{{56}} = 1,875\).
b) Y là số điểm thu được sau khi rút 3 tấm thẻ từ trong túi
\( \Rightarrow \) Giá trị của Y thuộc tập {24; 21; 18; 15}
Ta có:
\(\begin{array}{l}P\left( {Y = 24} \right) = P\left( {X = 0} \right) = \frac{2}{{56}};P\left( {Y = 21} \right) = P\left( {X = 1} \right) = \frac{{15}}{{56}}\\P\left( {Y = 18} \right) = P\left( {X = 2} \right) = \frac{{27}}{{56}};P\left( {Y = 15} \right) = P\left( {X = 3} \right) = \frac{{12}}{{56}}\end{array}\)
Bảng phân bố xác suất của Y là
Bài 1.3 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài 1.3 bao gồm một số câu hỏi và bài tập liên quan đến việc tính đạo hàm của các hàm số. Các hàm số này có thể là hàm số đơn giản như đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit, hoặc các hàm số phức tạp hơn được xây dựng từ các hàm số cơ bản. Để giải quyết các bài tập này, học sinh cần:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x^2 + 2x - 1.
Lời giải:
f'(x) = d/dx (3x^2 + 2x - 1) = 3 * d/dx (x^2) + 2 * d/dx (x) - d/dx (1) = 3 * 2x + 2 * 1 - 0 = 6x + 2.
Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) * cos(x).
Lời giải:
g'(x) = d/dx (sin(x) * cos(x)) = sin(x) * d/dx (cos(x)) + cos(x) * d/dx (sin(x)) = sin(x) * (-sin(x)) + cos(x) * cos(x) = cos^2(x) - sin^2(x).
Đề bài: Tính đạo hàm của hàm số h(x) = e^(2x).
Lời giải:
h'(x) = d/dx (e^(2x)) = e^(2x) * d/dx (2x) = e^(2x) * 2 = 2e^(2x).
Ngoài các bài tập tính đạo hàm trực tiếp, bài 1.3 còn có thể xuất hiện các dạng bài tập sau:
Bài 1.3 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các công thức, quy tắc và luyện tập thường xuyên, các em có thể tự tin giải quyết các bài tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn hy vọng bài viết này đã cung cấp cho các em những thông tin hữu ích và giúp các em học tập hiệu quả hơn. Chúc các em thành công!