Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 1.10 trang 21 thuộc Chuyên đề học tập Toán 12 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Trong một lớp học có 6 bóng đèn hoạt động độc lập với nhau. Mỗi bóng có xác suất bị hỏng là 0,25. Gọi X là số bóng sáng. a) Gọi tên phân bố xác suất biến ngẫu nhiên X. b) Biết rằng lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng. Tính xác suất để lớp học đủ ánh sáng. c) Tính kì vọng, phương sai và độ lệch chuẩn của X.
Đề bài
Trong một lớp học có 6 bóng đèn hoạt động độc lập với nhau. Mỗi bóng có xác suất bị hỏng là 0,25. Gọi X là số bóng sáng.
a) Gọi tên phân bố xác suất biến ngẫu nhiên X.
b) Biết rằng lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng. Tính xác suất để lớp học đủ ánh sáng.
c) Tính kì vọng, phương sai và độ lệch chuẩn của X.
Phương pháp giải - Xem chi tiết
Áp dụng chú ý về phân bố nhị thức, công thức tính kì vọng, phương sai và độ lệch chuẩn của phân bố nhị thức.
Lời giải chi tiết
a) X là biến ngẫu nhiên có phân bố nhị thức với \(n = 6;p = 0,75\).
b) Lớp học có đủ ánh sáng nếu có ít nhất 4 bóng sáng tức là \(X \ge 4\).
Theo chú ý về phân bố nhị thức ta có:
\(\begin{array}{l}P\left( {X \ge 4} \right) = P\left( {X = 4} \right) + P\left( {X = 5} \right) + P\left( {X = 6} \right)\\{\rm{ }} = {\rm{ }}C_6^4.{\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{1}{4}} \right)^2} + C_6^5.{\left( {\frac{3}{4}} \right)^5}.{\left( {\frac{1}{4}} \right)^1} + C_6^6.{\left( {\frac{3}{4}} \right)^6} \approx 0,8306\end{array}\)
c) \(X \sim B(6;0,75) \Rightarrow \left\{ \begin{array}{l}E(X) = 6.0,75 = 4,5\\V(X) = 6.0,75.0,25 = 1,125\\\sigma (X) = \sqrt {6.0,75.0,25} = 1,061\end{array} \right.\)
Bài 1.10 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng về giới hạn của hàm số. Để giải bài tập này, chúng ta cần nắm vững các khái niệm cơ bản về giới hạn, các định lý liên quan và các phương pháp tính giới hạn thường gặp.
(Nội dung đề bài sẽ được chèn vào đây. Ví dụ: Tính các giới hạn sau: a) lim (x->2) (x^2 - 4)/(x - 2); b) lim (x->0) sin(x)/x; c) lim (x->∞) (2x + 1)/(x - 3))
Có nhiều phương pháp để giải bài tập về giới hạn, tùy thuộc vào dạng bài tập cụ thể. Một số phương pháp thường được sử dụng bao gồm:
(Giải chi tiết từng phần của bài tập, áp dụng các phương pháp đã nêu ở trên. Ví dụ:
a) lim (x->2) (x^2 - 4)/(x - 2) = lim (x->2) (x - 2)(x + 2)/(x - 2) = lim (x->2) (x + 2) = 4
b) lim (x->0) sin(x)/x = 1 (Sử dụng giới hạn đặc biệt)
c) lim (x->∞) (2x + 1)/(x - 3) = lim (x->∞) (2 + 1/x)/(1 - 3/x) = 2/1 = 2
)
Khi giải bài tập về giới hạn, bạn cần lưu ý một số điều sau:
Để củng cố kiến thức về giới hạn, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 1.10 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức. Chúc bạn học tập tốt!