Logo Header
  1. Môn Toán
  2. Giải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Bài 1.16 trang 22 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, cùng với các lưu ý quan trọng để bạn có thể tự tin giải quyết bài toán này.

Hãy cùng theo dõi bài giải dưới đây để hiểu rõ phương pháp và cách tiếp cận bài toán một cách hiệu quả nhất.

Hai kì thủ Hoà và Trường thì một trận đấu cờ. Biết rằng thể lệ ở mỗi ván đấu trong trận này không có kết quả hoà. Xác suất thắng của Trưởng trong một văn là 0,4. Trận đấu gồm 7 ván. Người nào thắng một số ván lớn hơn là người thắng cuộc. Tính xác suất để Trường là người thắng cuộc.

Đề bài

Hai kì thủ Hoà và Trường thì một trận đấu cờ. Biết rằng thể lệ ở mỗi ván đấu trong trận này không có kết quả hoà. Xác suất thắng của Trưởng trong một văn là 0,4. Trận đấu gồm 7 ván. Người nào thắng một số ván lớn hơn là người thắng cuộc. Tính xác suất để Trường là người thắng cuộc.

Phương pháp giải - Xem chi tiếtGiải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

Áp dụng chú ý về phân bố nhị thức.

Lời giải chi tiết

Gọi \(X\)là số ván thắng của Trường. Khi đó, \(X \sim B(7;0,4)\).

Biến cố: “Trường thắng cuộc” là biến cố \(\left\{ {X \ge 4} \right\}\).

Khi đó, theo chú ý về phân bố nhị thức ta có:

\(\begin{array}{l}P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)\\ = C_7^4{.0,4^4}{.0,6^3} + C_7^5{.0,4^5}{.0,6^2} + C_7^6{.0,4^6}{.0,6^3} + {0,4^7} = 0,29.\end{array}\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.16 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.16 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài toán này, chúng ta cần thực hiện các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Tính f'(x) để tìm các điểm dừng.
  3. Tìm các điểm dừng: Giải phương trình f'(x) = 0 để tìm các giá trị x mà tại đó đạo hàm bằng 0.
  4. Lập bảng biến thiên: Xác định dấu của đạo hàm trên các khoảng xác định để xác định khoảng đồng biến, nghịch biến.
  5. Xác định cực trị: Dựa vào bảng biến thiên để xác định các điểm cực đại, cực tiểu.
  6. Kết luận: Tổng hợp các kết quả để đưa ra kết luận về tính chất của hàm số.

Lời giải chi tiết bài 1.16

Đề bài: (Giả sử đề bài cụ thể của bài 1.16 được đưa ra ở đây. Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Khảo sát hàm số và tìm các điểm cực trị.)

Giải:

  1. Tập xác định: Hàm số y = x3 - 3x2 + 2 xác định trên R.
  2. Đạo hàm bậc nhất: y' = 3x2 - 6x
  3. Điểm dừng: Giải phương trình 3x2 - 6x = 0, ta được x = 0 hoặc x = 2.
  4. Bảng biến thiên:

    x-∞02+∞
    y'+-+
    y
  5. Cực trị:
    • Tại x = 0, y' đổi dấu từ dương sang âm, hàm số đạt cực đại và y = 2.
    • Tại x = 2, y' đổi dấu từ âm sang dương, hàm số đạt cực tiểu và yct = -2.
  6. Kết luận: Hàm số y = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Lưu ý khi giải bài tập về khảo sát hàm số

  • Luôn kiểm tra tập xác định của hàm số trước khi thực hiện các phép toán.
  • Tính đạo hàm chính xác và cẩn thận.
  • Lập bảng biến thiên một cách chi tiết để dễ dàng xác định các khoảng đồng biến, nghịch biến và cực trị.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ứng dụng của việc khảo sát hàm số

Khảo sát hàm số là một kỹ năng quan trọng trong toán học, có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, bao gồm:

  • Vật lý: Xác định các điểm cực trị của một hàm số mô tả một hiện tượng vật lý.
  • Kinh tế: Tìm điểm tối ưu trong các bài toán tối ưu hóa.
  • Kỹ thuật: Thiết kế các hệ thống và quy trình hiệu quả.

Giaitoan.edu.vn – Đồng hành cùng bạn trên con đường chinh phục toán học

Giaitoan.edu.vn luôn đồng hành cùng bạn trong quá trình học tập và rèn luyện toán học. Chúng tôi cung cấp các bài giải chi tiết, dễ hiểu, cùng với các bài tập luyện tập đa dạng để giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán khó.

Tài liệu, đề thi và đáp án Toán 12