Bài 1.2 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Số cuộc điện thoại gọi đến một trung tâm cứu hộ trong khoảng thời gian từ 12 giờ đến 13 giờ là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau: a) Tính xác suất để xảy ra ít nhất 2 cuộc gọi đến trung tâm cứu hộ đó. b) Tính xác suất để xảy ra nhiều nhất 3 cuộc gọi đến trung tâm cứu hộ đó. c) Tính (Eleft( X right),{rm{ }}Vleft( X right))và (sigma left( X right)).
Đề bài
Số cuộc điện thoại gọi đến một trung tâm cứu hộ trong khoảng thời gian từ 12 giờ đến 13 giờ là một biến ngẫu nhiên rời rạc X có bảng phân bố xác suất như sau:
a) Tính xác suất để xảy ra ít nhất 2 cuộc gọi đến trung tâm cứu hộ đó.
b) Tính xác suất để xảy ra nhiều nhất 3 cuộc gọi đến trung tâm cứu hộ đó.
c) Tính \(E\left( X \right),{\rm{ }}V\left( X \right)\)và \(\sigma \left( X \right)\).
Phương pháp giải - Xem chi tiết
Bước 1: Gọi các biến cố cần tìm
Bước 2: Dựa vào các dữ kiện đề bài và bảng phân phối để tính xác suất của các biến cố
Bước 3: Tính \(E\left( X \right),{\rm{ }}V\left( X \right)\)và \(\sigma \left( X \right)\) theo công thức
Lời giải chi tiết
a) Gọi A là biến cố: “Xảy ra ít nhất 2 cuộc gọi”.
\( \Rightarrow \overline A \) là biến cố: “Xảy ra nhiều nhất 1 cuộc gọi”. \( \Rightarrow \overline A = \left\{ {X = 0} \right\} \cup \left\{ {X = 1} \right\}\)
Khi đó \(P(\overline A ) = P(X = 0) + P(X = 1) = 0,25 + 0,2 = 0,45\)
Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - 0,45 = 0,55\)
b) Gọi B là biến cố: “Xảy ra nhiều nhất 3 cuộc gọi đến trung tâm cứu hộ đó”. Khi đó
\(P\left( B \right) = P\left( {X = 0} \right) + P\left( {X = 1} \right) + P\left( {X = 2} \right) + P\left( {X = 3} \right) = 0,25 + 0,2 + 0,15 + 0,15 = 0,75.\)
c)
\(\begin{array}{*{20}{l}}{E\left( X \right) = 0.0,25 + 1.0,2 + 2.0,15 + 3.0,15 + 4.0,13 + 5.0,12 = 2,07.}\\{V\left( X \right) = {0^2}.0,25 + {1^2}.0,2 + {2^2}.0,15 + {3^2}.0,15 + {4^2}.0,13 + {5^2}.0,12--{{2,07}^2}\; = 2,9451.}\\{\sigma (X) = \sqrt {2,9451} = 1,7161}\end{array}\)
Bài 1.2 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc ứng dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài toán này thường yêu cầu học sinh phân tích hàm số, tìm đạo hàm, và sử dụng đạo hàm để xác định các điểm cực trị, khoảng đồng biến, nghịch biến của hàm số.
Trước khi bắt đầu giải bài, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu. Xác định rõ hàm số cần xét, các điều kiện ràng buộc (nếu có), và mục tiêu của bài toán (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất, hoặc chứng minh một bất đẳng thức).
Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 1.2 trang 13 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.