Logo Header
  1. Môn Toán
  2. Giải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức

Bài 1.12 trang 21 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.12 này, giúp các em học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các em.

Cam xuất khẩu được đóng thành từng thùng. Xác suất để một quả cam không đạt chất lượng là 0,03. Vì số lượng cam trong mỗi thùng rất lớn nên không thể kiểm tra toàn bộ số cam trong thùng, người ta lấy ngẫu nhiên từ thùng cam 20 lần một cách độc lập, mỗi lần lấy 1 quả để kiểm tra rồi trả lại nó vào thùng. Gọi X là số quả cam không đạt chất lượng. a) Gọi tên phân bố xác suất biến ngẫu nhiên X. b) Các thùng cam được phân thành ba loại theo cách sau: Trong 20 lần lấy đó: - Nếu tất cả các

Đề bài

Cam xuất khẩu được đóng thành từng thùng. Xác suất để một quả cam không đạt chất lượng là 0,03. Vì số lượng cam trong mỗi thùng rất lớn nên không thể kiểm tra toàn bộ số cam trong thùng, người ta lấy ngẫu nhiên từ thùng cam 20 lần một cách độc lập, mỗi lần lấy 1 quả để kiểm tra rồi trả lại nó vào thùng. Gọi X là số quả cam không đạt chất lượng.

a) Gọi tên phân bố xác suất biến ngẫu nhiên X.

b) Các thùng cam được phân thành ba loại theo cách sau:

Trong 20 lần lấy đó:

- Nếu tất cả các quả cam lấy ra đều đạt chất lượng thì thùng được xếp loại I;

- Nếu có 1 hoặc 2 quả cam không đạt chất lượng thì thùng được xếp loại II;

- Nếu có ít nhất 3 quả cam không đạt chất lượng thì thùng được xếp loại III.

Tính tỉ lệ các thùng cam được xếp loại I, II, III.

Phương pháp giải - Xem chi tiếtGiải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

Sử dụng công thức của phân bố nhị thức, chú ý về phân bố nhị thức và biến cố đối

Lời giải chi tiết

a) X là biến ngẫu nhiên có phân bố xác suất nhị thức với tham số \(n = 20;p = 0,03\)

b)

Gọi A là biến cố: “Thùng cam được xếp loại I”

Khi đó, \(P(A) = P(X = 0) = C_{20}^0{.0,03^0}{.0,97^{20}} \approx 0,5438\)

Gọi B là biến cố: “Thùng cam được xếp loại II” tức là có 1 hoặc 2 quả cam không đạt chất lượng \( \Rightarrow B = \left\{ {X = 1} \right\} \cup \left\{ {X = 2} \right\}\)

\(P(B) = P(X = 1) + P(X = 2) = C_{20}^1{.0,03^1}{.0,97^{19}} + C_{20}^2{.0,03^2}{.0,97^{18}} \approx 0,4352\)

Gọi C là biến cố: “Thùng cam được xếp loại III” tức là có ít nhất 3 quả cam không đạt chất lượng \( \Rightarrow \overline C \) là biến cố: “Có nhiều nhất 2 quả cam không đạt chất lượng”

\(\overline C = \left\{ {X = 0} \right\} + \left\{ {X = 1} \right\} + \left\{ {X = 2} \right\}\)

\(\begin{array}{l} \Rightarrow P(\overline C ) = P(X = 0) + P(X = 1) + P(X = 2) = 0,5438 + 0,4352 = 0,979\\ \Rightarrow P(C) = 1 - P(\overline C ) = 0,021\end{array}\)

Vậy tỉ lệ các thùng cam được xếp loại I, II, III tương ứng là \(54,38\% ;43,52\% ;2,1\% \)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc khảo sát hàm số. Để giải bài này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát. Trong bài 1.12, hàm số thường được cho dưới dạng biểu thức toán học hoặc mô tả bằng lời.
  2. Tính đạo hàm: Sử dụng các quy tắc đạo hàm cơ bản để tính đạo hàm cấp một (y') và đạo hàm cấp hai (y'') của hàm số.
  3. Tìm điểm cực trị: Giải phương trình y' = 0 để tìm các điểm cực trị của hàm số. Sau đó, sử dụng đạo hàm cấp hai để xác định loại điểm cực trị (cực đại hoặc cực tiểu).
  4. Khảo sát tính đơn điệu: Dựa vào dấu của đạo hàm cấp một, xác định các khoảng mà hàm số đồng biến hoặc nghịch biến.
  5. Tìm điểm uốn: Giải phương trình y'' = 0 để tìm các điểm uốn của hàm số.
  6. Khảo sát tính lồi lõm: Dựa vào dấu của đạo hàm cấp hai, xác định các khoảng mà hàm số lồi hoặc lõm.
  7. Vẽ đồ thị hàm số: Sử dụng các thông tin đã thu thập được để vẽ đồ thị hàm số.

Lời giải chi tiết bài 1.12 trang 21

Để minh họa, chúng ta sẽ cùng nhau giải bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức với một ví dụ cụ thể. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước tính toán, giải thích rõ ràng và kết luận. Ví dụ này sẽ được thay thế bằng lời giải chính xác của bài 1.12)

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các quy tắc đạo hàm: Việc hiểu rõ và áp dụng chính xác các quy tắc đạo hàm là yếu tố then chốt để giải quyết các bài toán liên quan đến đạo hàm.
  • Kiểm tra lại kết quả: Sau khi tính toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng công cụ hỗ trợ: Trong một số trường hợp, bạn có thể sử dụng các công cụ tính toán trực tuyến hoặc phần mềm toán học để hỗ trợ quá trình giải bài tập.
  • Luyện tập thường xuyên: Cách tốt nhất để nắm vững kiến thức về đạo hàm là luyện tập thường xuyên với nhiều bài tập khác nhau.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm không chỉ là một công cụ quan trọng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau, như:

  • Vật lý: Tính vận tốc, gia tốc, lực.
  • Kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Tổng kết

Bài 1.12 trang 21 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, các em học sinh sẽ có thể giải bài tập này một cách tự tin và hiệu quả. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục tri thức!

Tài liệu, đề thi và đáp án Toán 12