Bài 1.9 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu và chính xác nhất cho bài tập này, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Màu hạt của đậu Hà Lan có hai kiểu hình: màu vàng và màu xanh. Có hai gene ứng với hai kiểu hình này là allele trội A và allele lặn a. Khi cho lai hai cây đậu Hà Lan, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ để hình thành một cặp gene. Bốn bạn An, Bình, Sơn và Dương, mỗi bạn độc lập với nhau, thực hiện phép thử là lai hai cây đậu Hà Lan, trong đó cây bố có kiểu gene là Aa, cây mẹ có kiểu gene là Aa. Gọi X là số cây con có hạt màu vàng trong số 4 cây con. a) Lập bảng ph
Đề bài
Màu hạt của đậu Hà Lan có hai kiểu hình: màu vàng và màu xanh. Có hai gene ứng với hai kiểu hình này là allele trội A và allele lặn a. Khi cho lai hai cây đậu Hà Lan, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ để hình thành một cặp gene.
Bốn bạn An, Bình, Sơn và Dương, mỗi bạn độc lập với nhau, thực hiện phép thử là lai hai cây đậu Hà Lan, trong đó cây bố có kiểu gene là Aa, cây mẹ có kiểu gene là Aa.
Gọi X là số cây con có hạt màu vàng trong số 4 cây con.
a) Lập bảng phân bố xác suất của X.
b) Hỏi trung bình có bao nhiêu cây con có hạt màu xanh?
Phương pháp giải - Xem chi tiết
Bước 1: Từ dữ kiện bài toán, ta tìm ra biến ngẫu nhiên X có phân bố nhị thức
Bước 2: Tính các xác suất theo công thức của phân bố nhị thức
Bước 3: Lập bảng phân phối
Bước 4: Hỏi về trung bình ở bài này tức là hỏi đến kì vọng của phân bố nhị thức, ta áp dụng công thức tính kì vọng của phân bố nhị thức.
Lời giải chi tiết
a)
Xét phép thử T: “Lai hai cây đậu Hà Lan”. Kết quả về kiểu gene của cây con là \(\left\{ {{\rm{AA}}{\rm{,Aa}}{\rm{,aA}}{\rm{,aa}}} \right\}\)trong đó, 3 kiểu gene \(\left\{ {{\rm{AA}}{\rm{,Aa}}{\rm{,aA}}} \right\}\) có kiểu hình hạt màu vàng, kiểu gene aa có kiểu hình hạt màu xanh. Khi đó X là số cây con có hạt màu vàng trong số 4 cây con có phân bố nhị thức tức là \(X \sim B\left( {4;\frac{3}{4}} \right)\).
Giá trị của X thuộc tập {0; 1; 2; 3; 4}.
\(\begin{array}{l}P(X = 0) = C_4^0{\left( {\frac{3}{4}} \right)^0}.{\left( {\frac{1}{4}} \right)^4} = \frac{1}{{256}}{\rm{ }}P(X = 1) = C_4^1{\left( {\frac{3}{4}} \right)^1}.{\left( {\frac{1}{4}} \right)^3} = \frac{{12}}{{256}}\\P(X = 2) = C_4^2{\left( {\frac{3}{4}} \right)^2}.{\left( {\frac{1}{4}} \right)^2} = \frac{{54}}{{256}}{\rm{ }}P(X = 3) = C_4^3{\left( {\frac{3}{4}} \right)^3}.{\left( {\frac{1}{4}} \right)^1} = \frac{{108}}{{256}}\\P(X = 4) = C_4^4{\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{1}{4}} \right)^0} = \frac{{81}}{{256}}\end{array}\)
Ta có bảng phân bố xác suất của \(X\) là:
b)
Gọi Y là số cây con có hạt màu xanh. Khi đó, \(Y \sim B\left( {4;\frac{1}{4}} \right)\)
Trung bình có \(E(Y) = 4.\frac{1}{4} = 1\) cây con có hạt màu xanh.
Bài 1.9 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng tính giới hạn của hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các định lý liên quan và các phương pháp tính giới hạn thường gặp.
Bài tập 1.9 thường yêu cầu tính giới hạn của một hàm số tại một điểm hoặc khi x tiến tới vô cùng. Dạng bài tập có thể bao gồm:
Để giải bài tập 1.9 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức, bạn có thể áp dụng các phương pháp sau:
Ví dụ: Tính giới hạn limx→2 (x2 - 4) / (x - 2)
Lời giải:
Ta có thể phân tích tử số thành nhân tử:
x2 - 4 = (x - 2)(x + 2)
Khi đó:
limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Kiến thức về giới hạn là nền tảng quan trọng cho việc học các khái niệm nâng cao hơn trong Toán học, như đạo hàm, tích phân và chuỗi. Việc nắm vững kiến thức này sẽ giúp bạn giải quyết các bài toán phức tạp một cách dễ dàng và hiệu quả hơn.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về giới hạn, bạn có thể tham khảo thêm các bài tập sau:
Hy vọng với hướng dẫn chi tiết và lời giải trên, bạn đã hiểu rõ cách giải bài 1.9 trang 20 Chuyên đề học tập Toán 12 - Kết nối tri thức. Chúc bạn học tập tốt!