Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho Bài 2 trang 18 sách bài tập Toán 7 tập 1, chương trình Chân trời sáng tạo. Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn, đặc biệt là với những em mới làm quen với chương trình.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh, cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.
Tính
Đề bài
Tính
a)\(\left( { - 0,5} \right) - \left( { - 1 + \dfrac{2}{3}} \right):1,5 + \left( {\dfrac{{ - 1}}{4}} \right)\)
b)\(\left[ {\left( {\dfrac{{ - 7}}{8}} \right):\dfrac{{21}}{{16}}} \right] - \dfrac{5}{3}.\left( {\dfrac{1}{3} - \dfrac{7}{{10}}} \right)\)
c)\({\left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{4}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\)
d)\({\left( {\dfrac{1}{{25}} - 0,4} \right)^2}:\dfrac{9}{{125}} - \left[ {\left( {1\dfrac{1}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\)
e)\(\left\{ {3\dfrac{{17}}{{18}}.\left[ {\dfrac{5}{2} - \left( {\dfrac{1}{3} + \dfrac{2}{9}} \right)} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + 0,25} \right]^2}\)
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc bỏ ngoặc rồi tính toán, nếu có lũy thừa hay số thập phân thì ta viết chúng dưới dạng phân số để thuận lợi trong tính toán
Lời giải chi tiết
a)\(\left( { - 0,5} \right) - \left( { - 1 + \dfrac{2}{3}} \right):1,5 + \left( {\dfrac{{ - 1}}{4}} \right)\)
\(\begin{array}{l} = \left( {\dfrac{{ - 1}}{2}} \right) - \left( {\dfrac{{ - 3}}{3} + \dfrac{2}{3}} \right):\dfrac{3}{2} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 1}}{2}} \right) - \left( {\dfrac{{ - 1}}{3}} \right).\dfrac{2}{3} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 1}}{2}} \right) + \dfrac{2}{9} + \left( {\dfrac{{ - 1}}{4}} \right)\\ = \left( {\dfrac{{ - 18}}{{36}}} \right) + \dfrac{8}{{36}} + \left( {\dfrac{{ - 9}}{{36}}} \right) = \dfrac{{ - 19}}{{36}}\end{array}\)
b)\(\left[ {\left( {\dfrac{{ - 7}}{8}} \right):\dfrac{{21}}{{16}}} \right] - \dfrac{5}{3}.\left( {\dfrac{1}{3} - \dfrac{7}{{10}}} \right)\)
\(\begin{array}{l} = \left[ {\left( {\dfrac{{ - 7}}{8}} \right).\dfrac{{16}}{{21}}} \right] - \dfrac{5}{3}.\left( {\dfrac{{10}}{{30}} - \dfrac{{21}}{{30}}} \right)\\ = \dfrac{{\left( { - 7} \right).16}}{{8.21}} - \dfrac{5}{3}.\left( {\dfrac{{ - 11}}{{30}}} \right)\end{array}\)
\(\begin{array}{l} = - \dfrac{{7.8.2}}{{8.7.3}} + \dfrac{{5.11}}{{3.5.6}}\\ = \dfrac{{ - 2}}{3} + \dfrac{{11}}{{18}} = \dfrac{{ - 1}}{{18}}\end{array}\)
c)\({\left[ {\left( {\dfrac{{ - 2}}{3}} \right) + \dfrac{3}{4}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\) \( = {\left[ {\left( {\dfrac{{ - 8}}{{12}}} \right) + \dfrac{9}{{12}}} \right]^2}.\dfrac{{12}}{5} - \dfrac{1}{5} = {\left( {\dfrac{1}{{12}}} \right)^2}.\dfrac{{12}}{5} - \dfrac{1}{5}\\ = \dfrac{1}{{{{12}^2}}}.\dfrac{{12}}{5} - \dfrac{1}{5} = \dfrac{1}{{60}} - \dfrac{1}{5}= \dfrac{1}{{60}} - \dfrac{12}{60} = \dfrac{{ - 11}}{{60}}\)
d)\({\left( {\dfrac{1}{{25}} - 0,4} \right)^2}:\dfrac{9}{{125}} - \left[ {\left( {1\dfrac{1}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\)
\(\begin{array}{l} = {\left( {\dfrac{1}{{25}} - \dfrac{2}{5}} \right)^2}.\dfrac{{125}}{9} - \left[ {\left( {\dfrac{4}{3} - \dfrac{2}{5}} \right).\dfrac{3}{7}} \right]\\ = {\left( {\dfrac{{ - 9}}{{25}}} \right)^2}.\dfrac{{125}}{9} - \left( {\dfrac{{14}}{{15}}.\dfrac{3}{7}} \right)\\ = \dfrac{{{9^2}}}{{{{25}^2}}}.\dfrac{{125}}{9} - \dfrac{2}{5}\\ = \dfrac{{{{\left( {{3^2}} \right)}^2}}}{{{{\left( {{5^2}} \right)}^2}}}.\dfrac{{{5^3}}}{{{3^2}}} - \dfrac{2}{5} = \dfrac{{{3^2}}}{5} - \dfrac{2}{5} = \dfrac{9}{5} - \dfrac{2}{5} = \dfrac{7}{5}\end{array}\)
e)\(\left\{ {3\dfrac{{17}}{{18}}.\left[ {\dfrac{5}{2} - \left( {\dfrac{1}{3} + \dfrac{2}{9}} \right)} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + 0,25} \right]^2}\)
\(\begin{array}{l} = \left\{ {\dfrac{{71}}{{18}}.\left[ {\dfrac{5}{2} - \dfrac{5}{9}} \right]} \right\}:{\left[ {\left( {\dfrac{{ - 1}}{2}} \right) + \dfrac{1}{4}} \right]^2}\\ = \left( {\dfrac{{71}}{{18}}.\dfrac{{35}}{{18}}} \right):{\left( {\dfrac{1}{4}} \right)^2} = \dfrac{{2485}}{{324}}:\dfrac{1}{{16}} \\= \dfrac{{2485}}{{324}}.16 = \dfrac{{9940}}{{81}}\end{array}\)
Bài 2 trang 18 sách bài tập Toán 7 tập 1 Chân trời sáng tạo thuộc chương trình học về các phép toán với số nguyên. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học về cộng, trừ, nhân, chia số nguyên, quy tắc dấu ngoặc, và thứ tự thực hiện các phép toán để giải quyết các bài toán cụ thể.
Bài 2 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một phép tính hoặc một chuỗi các phép tính. Các bài toán có thể được trình bày dưới dạng biểu thức số hoặc dưới dạng bài toán có ngữ cảnh thực tế.
Để giải Bài 2 trang 18 sách bài tập Toán 7 tập 1 Chân trời sáng tạo một cách hiệu quả, học sinh cần:
Giả sử Bài 2 có câu hỏi sau:
Tính: a) 5 + (-3) - 2; b) (-4) * 2 + 10; c) 15 : (-3) - (-5)
Giải:
Ngoài các bài tập tính toán trực tiếp, Bài 2 trang 18 sách bài tập Toán 7 tập 1 Chân trời sáng tạo còn có thể xuất hiện các dạng bài tập sau:
Khi giải Bài 2 trang 18 sách bài tập Toán 7 tập 1 Chân trời sáng tạo, học sinh cần lưu ý:
Giaitoan.edu.vn là một trang web học toán online uy tín, cung cấp đầy đủ các tài liệu học tập, bài giảng, và lời giải bài tập Toán 7, Toán 8, Toán 9, Toán 10, Toán 11, Toán 12. Chúng tôi cam kết mang đến cho học sinh những trải nghiệm học tập tốt nhất, giúp các em học toán hiệu quả và đạt kết quả cao.
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh đã có thể tự tin giải Bài 2 trang 18 sách bài tập Toán 7 tập 1 Chân trời sáng tạo. Chúc các em học tập tốt!