Chào mừng các em học sinh đến với lời giải chi tiết Bài 3 trang 33 sách bài tập Toán 7 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp các em hiểu bài và làm bài tập một cách hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Trong các biểu thức sau, biểu thức nào là đa thức một biến?
Đề bài
Trong các biểu thức sau, biểu thức nào là đa thức một biến?
\(5 - 2x\); \(6{x^2} + 8{x^3} + 3x - 2\); \(\frac{2}{{x - 1}}\); \(\frac{1}{4}t - 5\).
Phương pháp giải - Xem chi tiết
Nắm rõ khái niệm đơn thức một biến, đa thức một biến để xác định.
Đơn thức một biến là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và biến đó.
Đa thức một biến là tổng của những đơn thức cùng một biến.
Lời giải chi tiết
Các đa thức một biến là “ \(5 - 2x;\,\,6{x^2} + 8{x^3} + 3x - 2\); \(\frac{1}{4}t - 5\).
Bài 3 trang 33 sách bài tập Toán 7 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng các kiến thức về số hữu tỉ, phép cộng, trừ, nhân, chia số hữu tỉ vào giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải phân tích đề bài, xác định đúng các yếu tố cần tìm và lựa chọn phương pháp giải phù hợp.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 33 sách bài tập Toán 7 Chân trời sáng tạo một cách hiệu quả, các em cần:
Ví dụ: Tính giá trị của biểu thức sau: (1/2) + (2/3) - (1/4)
Giải:
Để tính giá trị của biểu thức, ta cần quy đồng mẫu số của các phân số:
(1/2) + (2/3) - (1/4) = (6/12) + (8/12) - (3/12) = (6 + 8 - 3)/12 = 11/12
Vậy, giá trị của biểu thức là 11/12.
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học Toán 7 hiệu quả:
Bài 3 trang 33 sách bài tập Toán 7 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về số hữu tỉ và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin giải quyết bài toán này một cách hiệu quả. Chúc các em học tập tốt!