Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 20 trong Chuyên đề học tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Người ta muốn xây một đường cống thoát nước có mặt cắt ngang là hình tạo bởi một nửa hình tròn ghép với một hình chữ nhật (Hình 6). Biết rằng mặt cắt ngang có diện tích 2 m2. Các kích thước \(x,y\) (đơn vị: m) bằng bao nhiêu để chu vi của mặt cắt ngang là nhỏ nhất? Tính chu vi nhỏ nhất đó.

Đề bài

Người ta muốn xây một đường cống thoát nước có mặt cắt ngang là hình tạo bởi một nửa hình tròn ghép với một hình chữ nhật (Hình 6). Biết rằng mặt cắt ngang có diện tích 2 m2. Các kích thước \(x,y\) (đơn vị: m) bằng bao nhiêu để chu vi của mặt cắt ngang là nhỏ nhất? Tính chu vi nhỏ nhất đó.

Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 2

• Tìm mối quan hệ giữa \(x,y\), biểu thị chu vi thông qua các đại lượng đã biết và ẩn.

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:

‒ Lập bảng biến thiên của hàm số trên tập hợp đó.

‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.

Lời giải chi tiết

Bán kính nửa hình tròn là \(\frac{x}{2}\).

Diện tích nửa hình tròn là \(\frac{1}{2}\pi .{\left( {\frac{x}{2}} \right)^2} = \frac{{\pi {x^2}}}{8}\).

Diện tích hình chữ nhật là \(xy\).

Diện tích mặt cắt ngang là: \(xy + \frac{{\pi {x^2}}}{8}\).

Do diện tích mặt cắt ngang bằng 2m2 nên ta có: \(xy + \frac{{\pi {x^2}}}{8} = 2 \Rightarrow y = \frac{1}{x}\left( {2 - \frac{{\pi {x^2}}}{8}} \right)\).

Do \(x,y > 0\) nên ta có: \(\frac{1}{x}\left( {2 - \frac{{\pi {x^2}}}{8}} \right) > 0 \Leftrightarrow 2 - \frac{{\pi {x^2}}}{8} > 0 \Leftrightarrow \frac{{\pi {x^2}}}{8} < 2 \Leftrightarrow {x^2} < \frac{{16}}{\pi } \Leftrightarrow x < \frac{4}{{\sqrt \pi }}\)

Chu vi của mặt cắt ngang là:

\(P = \frac{1}{2}.2\pi .\frac{x}{2} + x + 2y = \frac{{\pi x}}{2} + x + 2.\frac{1}{x}\left( {2 - \frac{{\pi {x^2}}}{8}} \right) = \left( {1 + \frac{\pi }{4}} \right)x + \frac{4}{x}\) với \(0 < x < \frac{4}{{\sqrt \pi }}\).

Xét hàm số \(P\left( x \right) = \left( {1 + \frac{\pi }{4}} \right)x + \frac{4}{x}\) trên khoảng \(\left( {0;\frac{4}{{\sqrt \pi }}} \right)\).

Ta có: \(P'\left( x \right) = \left( {1 + \frac{\pi }{4}} \right) - \frac{4}{{{x^2}}}\)

\(P'\left( x \right) = 0 \Leftrightarrow \left( {1 + \frac{\pi }{4}} \right) - \frac{4}{{{x^2}}} = 0 \Leftrightarrow {x^2} = \frac{{16}}{{\pi + 4}} \Leftrightarrow x = \frac{4}{{\sqrt {\pi + 4} }}\) hoặc \(x = - \frac{4}{{\sqrt {\pi + 4} }}\) (loại).

Bảng biến thiên của hàm số trên khoảng \(\left( {0;\frac{4}{{\sqrt \pi }}} \right)\):

Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 3

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {0;\frac{4}{{\sqrt \pi }}} \right)} P\left( x \right) = P\left( {\frac{4}{{\sqrt {\pi + 4} }}} \right) \approx 5,34\).

Vậy chu vi nhỏ nhất của mặt cắt ngang của đường cống là khoảng 5,34 m khi \(x = \frac{4}{{\sqrt {\pi + 4} }} \approx 1,50\left( m \right)\) và \(y = \frac{2}{{\frac{4}{{\sqrt {\pi + 4} }}}} - \frac{{\pi .\frac{4}{{\sqrt {\pi + 4} }}}}{8} \approx 0,75\left( m \right)\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tính toán và tư duy logic.

Nội dung bài tập

Bài 1 trang 20 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
  • Giải các bài toán thực tế ứng dụng đạo hàm.

Phương pháp giải bài tập

Để giải bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Khái niệm đạo hàm: hiểu rõ định nghĩa, ý nghĩa hình học và ý nghĩa vật lý của đạo hàm.
  2. Các quy tắc tính đạo hàm: nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  3. Đạo hàm của các hàm số cơ bản: nhớ đạo hàm của các hàm số thường gặp như hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit.
  4. Ứng dụng đạo hàm: biết cách vận dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu, bài toán thực tế.

Lời giải chi tiết bài 1 trang 20

Dưới đây là lời giải chi tiết cho bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo:

Câu a:

Đề bài: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Lời giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Câu b:

Đề bài: Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).

Lời giải:

g'(x) = cos(x) - sin(x)

Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).

Câu c:

Đề bài: Tìm cực trị của hàm số h(x) = x3 - 3x2 + 2.

Lời giải:

h'(x) = 3x2 - 6x

Giải phương trình h'(x) = 0, ta được x = 0 hoặc x = 2.

h''(x) = 6x - 6

h''(0) = -6 < 0, vậy hàm số đạt cực đại tại x = 0, giá trị cực đại là h(0) = 2.

h''(2) = 6 > 0, vậy hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là h(2) = -2.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
  • Sử dụng đúng các công thức và quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Chân trời sáng tạo.
  • Sách bài tập Toán 12 - Chân trời sáng tạo.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 1 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin hơn khi đối mặt với các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12