Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 12 Chân trời sáng tạo tại giaitoan.edu.vn. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho mục 3 trang 67, 68, 69, 70, giúp các em nắm vững kiến thức và tự tin giải quyết các bài toán khó.
Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết mang đến cho các em những bài giải chính xác, khoa học và phù hợp với chương trình học.
Một công ty dược nhận thấy xác suất một bệnh nhân có phản ứng phụ khi được điều trị bằng một loại thuốc M là 0,08. Chọn ngẫu nhiên 10000 bệnh nhân được điều trị một cách độc lập bằng thuốc M. Gọi (X) là số bệnh nhân có phản ứng phụ trong 10 000 bệnh nhân đó. Hãy viết biểu thức tính kì vọng của (X).
Trả lời câu hỏi Luyện tập 5 trang 70 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Cho biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {5;0,2} \right)\).
a) Tính xác suất của biến cố “\(X\) lớn hơn 3”.
b) Tính kì vọng và độ lệch chuẩn của \(X\).
Phương pháp giải:
Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\). Khi đó:
\(P\left( {X = k} \right) = {C}_n^k.{p^k}.{\left( {1 - p} \right)^{n - k}}\), với \(k = 0,1,...,n\); \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).
Lời giải chi tiết:
a) Xác suất của biến cố “\(X\) lớn hơn 3” là:
\(P\left( {X > 3} \right) = P\left( {X = 4} \right) + P\left( {X = 5} \right) = {C}_5^4{.0,2^4}.{\left( {1 - 0,2} \right)^{5 - 4}}{ + C}_5^5{.0,2^5}.{\left( {1 - 0,2} \right)^{5 - 5}} = \frac{{21}}{{3125}} \approx 0,007\)
b) Kì vọng của \(X\) là: \(E\left( X \right) = 5.0,2 = 1\).
Phương sai của \(X\) là: \(V\left( X \right) = 5.0,2\left( {1 - 0,2} \right) = 0,8\).
Độ lệch chuẩn của \(X\) là: \(\sigma \left( X \right) = \sqrt {V\left( X \right)} = \sqrt {0,8} \approx 0,89\).
Trả lời câu hỏi Luyện tập 4 trang 70 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Tính kì vọng của \(X\) ở HĐ3 (trang 67).
Phương pháp giải:
Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\) thì \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).
Lời giải chi tiết:
Gọi \(T\) là phép thử: “Chọn ngẫu nhiên bệnh nhân được điều trị bằng thuốc M” và \(A\) là biến cố: “Người đó có phản ứng phụ”. Gọi \(X\) là số lần xảy ra biến cố \(A\) khi lặp lại 10000 lần phép thử \(T\).
Do phép thử \(T\) được thực hiện 10000 lần một cách độc lập với nhau và xác suất xảy ra biến cố \(A\) mỗi lần thử là 0,08 nên \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức \(B\left( {10000;0,08} \right)\).
Kì vọng của \(X\) là: \(E\left( X \right) = 10000.0,08 = 800\).
Trả lời câu hỏi Vận dụng trang 70 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Vào đầu mùa đông, trang trại A lắp mới 10 bóng đèn để sưởi ấm cho gà. Các bóng đèn hoạt động độc lập với nhau và sẽ được bật liên tục trong mùa đông. Bóng bị hỏng không được thay thế. Xác suất không bị hỏng trong cả mùa đông của mỗi bóng đều bằng 0,8. Đàn gà sẽ đủ ấm nếu có ít nhất 7 bóng đèn hoạt động.
a) Tính xác suất của biến cố “Đàn gà đủ ấm trong suốt mùa đông”.
b) Nếu người ta mua dự trữ thêm 1 bóng đèn loại rất tốt, chắc chắn có thể sử dụng hết cả mùa đông, và sẽ sử dụng nó thay thế cho bóng đèn đầu tiên bị hỏng trong 10 bóng đèn ban đầu, thì xác suất của biến cố “Đàn gà đủ ấm trong suốt mùa đông” là bao nhiêu?
Phương pháp giải:
Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\). Khi đó:
\(P\left( {X = k} \right) = {C}_n^k.{p^k}.{\left( {1 - p} \right)^{n - k}}\), với \(k = 0,1,...,n\); \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).
Lời giải chi tiết:
Gọi \(X\) là số bóng đèn không bị hỏng trong suốt mùa đông. Do các bóng đèn hoạt động độc lập với nhau và xác suất không bị hỏng của mỗi bóng đèn đều bằng 0,8 nên \(X\) có phân bố nhị thức \(B\left( {10;0,8} \right)\).
a) Biến cố “Đàn gà đủ ấm trong suốt mùa đông” xảy ra khi \(X \ge 7\) nên xác suất của biến cố này là:
\(\begin{array}{l}P\left( {X \ge 7} \right) = P\left( {X = 7} \right) + P\left( {X = 8} \right) + P\left( {X = 9} \right) + P\left( {X = 10} \right)\\ = {C}_{10}^7{.0,8^7}.{\left( {1 - 0,8} \right)^{10 - 7}}{ + C}_{10}^8{.0,8^8}.{\left( {1 - 0,8} \right)^{10 - 8}}{ + C}_{10}^9{.0,8^9}.{\left( {1 - 0,8} \right)^{10 - 9}}{ + C}_{10}^{10}{.0,8^{10}}.{\left( {1 - 0,8} \right)^{10 - 10}}\\ \approx 0,88\end{array}\)
b) Khi mua thêm bóng đèn dự trữ thì biến cố “Đàn gà đủ ấm trong suốt mùa đông” xảy ra khi \(X \ge 6\). Xác suất của biến cố này là:
\(P\left( {X \ge 6} \right) = P\left( {X = 6} \right) + P\left( {X \ge 7} \right) = {C}_{10}^6{.0,8^6}.{\left( {1 - 0,8} \right)^4} + 0,88 \approx 0,97\).
Trả lời câu hỏi Hoạt động 3 trang 67 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Một công ty dược nhận thấy xác suất một bệnh nhân có phản ứng phụ khi được điều trị bằng một loại thuốc M là 0,08. Chọn ngẫu nhiên 10000 bệnh nhân được điều trị một cách độc lập bằng thuốc M. Gọi \(X\) là số bệnh nhân có phản ứng phụ trong 10 000 bệnh nhân đó. Hãy viết biểu thức tính kì vọng của \(X\).
Phương pháp giải:
‒ Sử dụng công thức Bernoulli: \(P\left( {{A_k}} \right) = {C}_n^k{p^k}{\left( {1 - p} \right)^{n - k}}\).
‒ Giả sử biến ngẫu nhiên rời rạc \(X\) có bảng phân bố xác suất như sau:
Kì vọng của \(X\) được tính bởi công thức: \(E\left( X \right) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\).
Lời giải chi tiết:
Gọi \(T\) là phép thử: “Chọn ngẫu nhiên bệnh nhân được điều trị bằng thuốc M”. Theo đề bài, phép thử \(T\) được lặp lại 10000 lần một cách độc lập.
Gọi \(A\) là biến cố: “Người đó có phản ứng phụ”. Ta có: \(P\left( A \right) = 0,08\).
Gọi \({A_k}\) là biến cố: “Có \(k\) trong 10000 người có phản ứng phụ”. Áp dụng công thức Bernoulli, ta có: \(P\left( {X = k} \right) = P\left( {{A_k}} \right) = {C}_{10000}^k{.0,08^k}{\left( {1 - 0,08} \right)^{10000 - k}} = {C}_{10000}^k{.0,08^k}{.0,92^{10000 - k}}\), với \(k = 0,1,...,10000\).
Khi đó \(X\) có bảng phân bố xác suất như sau:
Kì vọng của \(X\) là:
\(\begin{array}{l}E\left( X \right) = 1.{C}_{10000}^1{.0,08^1}{.0,92^{10000 - 1}} + 2.{C}_{10000}^2{.0,08^2}{.0,92^{10000 - 2}} + ... + 10000.{C}_{10000}^{10000}{.0,08^{10000}}{.0,92^{10000 - 10000}}\\ = \sum\limits_{k = 1}^{10000} {k{C}_{10000}^k{{.0,08}^k}{{.0,92}^{10000 - k}}} \end{array}\)
Trả lời câu hỏi Hoạt động 3 trang 67 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Một công ty dược nhận thấy xác suất một bệnh nhân có phản ứng phụ khi được điều trị bằng một loại thuốc M là 0,08. Chọn ngẫu nhiên 10000 bệnh nhân được điều trị một cách độc lập bằng thuốc M. Gọi \(X\) là số bệnh nhân có phản ứng phụ trong 10 000 bệnh nhân đó. Hãy viết biểu thức tính kì vọng của \(X\).
Phương pháp giải:
‒ Sử dụng công thức Bernoulli: \(P\left( {{A_k}} \right) = {C}_n^k{p^k}{\left( {1 - p} \right)^{n - k}}\).
‒ Giả sử biến ngẫu nhiên rời rạc \(X\) có bảng phân bố xác suất như sau:
Kì vọng của \(X\) được tính bởi công thức: \(E\left( X \right) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\).
Lời giải chi tiết:
Gọi \(T\) là phép thử: “Chọn ngẫu nhiên bệnh nhân được điều trị bằng thuốc M”. Theo đề bài, phép thử \(T\) được lặp lại 10000 lần một cách độc lập.
Gọi \(A\) là biến cố: “Người đó có phản ứng phụ”. Ta có: \(P\left( A \right) = 0,08\).
Gọi \({A_k}\) là biến cố: “Có \(k\) trong 10000 người có phản ứng phụ”. Áp dụng công thức Bernoulli, ta có: \(P\left( {X = k} \right) = P\left( {{A_k}} \right) = {C}_{10000}^k{.0,08^k}{\left( {1 - 0,08} \right)^{10000 - k}} = {C}_{10000}^k{.0,08^k}{.0,92^{10000 - k}}\), với \(k = 0,1,...,10000\).
Khi đó \(X\) có bảng phân bố xác suất như sau:
Kì vọng của \(X\) là:
\(\begin{array}{l}E\left( X \right) = 1.{C}_{10000}^1{.0,08^1}{.0,92^{10000 - 1}} + 2.{C}_{10000}^2{.0,08^2}{.0,92^{10000 - 2}} + ... + 10000.{C}_{10000}^{10000}{.0,08^{10000}}{.0,92^{10000 - 10000}}\\ = \sum\limits_{k = 1}^{10000} {k{C}_{10000}^k{{.0,08}^k}{{.0,92}^{10000 - k}}} \end{array}\)
Trả lời câu hỏi Luyện tập 4 trang 70 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Tính kì vọng của \(X\) ở HĐ3 (trang 67).
Phương pháp giải:
Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\) thì \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).
Lời giải chi tiết:
Gọi \(T\) là phép thử: “Chọn ngẫu nhiên bệnh nhân được điều trị bằng thuốc M” và \(A\) là biến cố: “Người đó có phản ứng phụ”. Gọi \(X\) là số lần xảy ra biến cố \(A\) khi lặp lại 10000 lần phép thử \(T\).
Do phép thử \(T\) được thực hiện 10000 lần một cách độc lập với nhau và xác suất xảy ra biến cố \(A\) mỗi lần thử là 0,08 nên \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức \(B\left( {10000;0,08} \right)\).
Kì vọng của \(X\) là: \(E\left( X \right) = 10000.0,08 = 800\).
Trả lời câu hỏi Luyện tập 5 trang 70 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Cho biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {5;0,2} \right)\).
a) Tính xác suất của biến cố “\(X\) lớn hơn 3”.
b) Tính kì vọng và độ lệch chuẩn của \(X\).
Phương pháp giải:
Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\). Khi đó:
\(P\left( {X = k} \right) = {C}_n^k.{p^k}.{\left( {1 - p} \right)^{n - k}}\), với \(k = 0,1,...,n\); \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).
Lời giải chi tiết:
a) Xác suất của biến cố “\(X\) lớn hơn 3” là:
\(P\left( {X > 3} \right) = P\left( {X = 4} \right) + P\left( {X = 5} \right) = {C}_5^4{.0,2^4}.{\left( {1 - 0,2} \right)^{5 - 4}}{ + C}_5^5{.0,2^5}.{\left( {1 - 0,2} \right)^{5 - 5}} = \frac{{21}}{{3125}} \approx 0,007\)
b) Kì vọng của \(X\) là: \(E\left( X \right) = 5.0,2 = 1\).
Phương sai của \(X\) là: \(V\left( X \right) = 5.0,2\left( {1 - 0,2} \right) = 0,8\).
Độ lệch chuẩn của \(X\) là: \(\sigma \left( X \right) = \sqrt {V\left( X \right)} = \sqrt {0,8} \approx 0,89\).
Trả lời câu hỏi Vận dụng trang 70 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Vào đầu mùa đông, trang trại A lắp mới 10 bóng đèn để sưởi ấm cho gà. Các bóng đèn hoạt động độc lập với nhau và sẽ được bật liên tục trong mùa đông. Bóng bị hỏng không được thay thế. Xác suất không bị hỏng trong cả mùa đông của mỗi bóng đều bằng 0,8. Đàn gà sẽ đủ ấm nếu có ít nhất 7 bóng đèn hoạt động.
a) Tính xác suất của biến cố “Đàn gà đủ ấm trong suốt mùa đông”.
b) Nếu người ta mua dự trữ thêm 1 bóng đèn loại rất tốt, chắc chắn có thể sử dụng hết cả mùa đông, và sẽ sử dụng nó thay thế cho bóng đèn đầu tiên bị hỏng trong 10 bóng đèn ban đầu, thì xác suất của biến cố “Đàn gà đủ ấm trong suốt mùa đông” là bao nhiêu?
Phương pháp giải:
Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\). Khi đó:
\(P\left( {X = k} \right) = {C}_n^k.{p^k}.{\left( {1 - p} \right)^{n - k}}\), với \(k = 0,1,...,n\); \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).
Lời giải chi tiết:
Gọi \(X\) là số bóng đèn không bị hỏng trong suốt mùa đông. Do các bóng đèn hoạt động độc lập với nhau và xác suất không bị hỏng của mỗi bóng đèn đều bằng 0,8 nên \(X\) có phân bố nhị thức \(B\left( {10;0,8} \right)\).
a) Biến cố “Đàn gà đủ ấm trong suốt mùa đông” xảy ra khi \(X \ge 7\) nên xác suất của biến cố này là:
\(\begin{array}{l}P\left( {X \ge 7} \right) = P\left( {X = 7} \right) + P\left( {X = 8} \right) + P\left( {X = 9} \right) + P\left( {X = 10} \right)\\ = {C}_{10}^7{.0,8^7}.{\left( {1 - 0,8} \right)^{10 - 7}}{ + C}_{10}^8{.0,8^8}.{\left( {1 - 0,8} \right)^{10 - 8}}{ + C}_{10}^9{.0,8^9}.{\left( {1 - 0,8} \right)^{10 - 9}}{ + C}_{10}^{10}{.0,8^{10}}.{\left( {1 - 0,8} \right)^{10 - 10}}\\ \approx 0,88\end{array}\)
b) Khi mua thêm bóng đèn dự trữ thì biến cố “Đàn gà đủ ấm trong suốt mùa đông” xảy ra khi \(X \ge 6\). Xác suất của biến cố này là:
\(P\left( {X \ge 6} \right) = P\left( {X = 6} \right) + P\left( {X \ge 7} \right) = {C}_{10}^6{.0,8^6}.{\left( {1 - 0,8} \right)^4} + 0,88 \approx 0,97\).
Mục 3 trong Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững lý thuyết và kỹ năng giải quyết vấn đề. Việc giải các bài tập trang 67, 68, 69, 70 là bước quan trọng để củng cố kiến thức và chuẩn bị cho các kỳ thi sắp tới.
Các bài tập trang 67 thường xoay quanh việc áp dụng các công thức và định lý đã học để giải các bài toán cơ bản. Ví dụ, có thể là tính đạo hàm của hàm số, tìm cực trị của hàm số, hoặc giải phương trình đạo hàm.
Trang 68 thường nâng cao độ khó hơn, yêu cầu học sinh phải kết hợp nhiều kiến thức khác nhau để giải quyết vấn đề. Các bài tập có thể liên quan đến việc khảo sát hàm số, tìm tiệm cận, hoặc vẽ đồ thị hàm số.
Các bài tập trang 69 thường tập trung vào các ứng dụng của đạo hàm trong thực tế, chẳng hạn như tìm vận tốc, gia tốc, hoặc tối ưu hóa các bài toán thực tế.
Trang 70 thường là phần tổng hợp, bao gồm các bài tập tổng hợp kiến thức đã học trong mục 3. Các bài tập này thường có tính chất phức tạp và đòi hỏi học sinh phải có tư duy logic và khả năng phân tích tốt.
Bài tập: Tìm đạo hàm của hàm số f(x) = x2 + 2x + 1.
Giải:
f'(x) = 2x + 2
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau:
Việc giải bài tập mục 3 trang 67, 68, 69, 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một quá trình đòi hỏi sự kiên trì và nỗ lực. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải quyết các bài toán và đạt kết quả tốt trong môn Toán.