Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 5 trang 38 Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp các em học sinh tự tin hơn trong quá trình học tập môn Toán.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng hành cùng các em trên con đường chinh phục kiến thức.
Ba của bạn Mai mua một chuyến du lịch Phú Quốc giá 15 triệu đồng ngày 16/8/2022 cho cả nhà bằng thẻ tín dụng phát hành ngày 06/8/2022 của ngân hàng X. Ngân hàng có chế độ không tính lãi trong 30 ngày đầu và cộng thêm khuyến mãi 25 ngày không tính lãi. Sau thời hạn trên, ngân hàng sẽ tính lãi với lãi suất 20%/năm (tính lãi kép theo ngày). Ba của Mai dự định sẽ hoàn tiền cho ngân hàng X vào ngày 01/11/2022. Khi đó ba của Mai phải hoàn trả bao nhiêu tiền cho ngân hàng?
Đề bài
Ba của bạn Mai mua một chuyến du lịch Phú Quốc giá 15 triệu đồng ngày 16/8/2022 cho cả nhà bằng thẻ tín dụng phát hành ngày 06/8/2022 của ngân hàng X. Ngân hàng có chế độ không tính lãi trong 30 ngày đầu và cộng thêm khuyến mãi 25 ngày không tính lãi. Sau thời hạn trên, ngân hàng sẽ tính lãi với lãi suất 20%/năm (tính lãi kép theo ngày). Ba của Mai dự định sẽ hoàn tiền cho ngân hàng X vào ngày 01/11/2022. Khi đó ba của Mai phải hoàn trả bao nhiêu tiền cho ngân hàng?
Phương pháp giải - Xem chi tiết
Giá trị cả vốn lẫn lãi sau \(n\) chu kì lãi kép: \({F_n} = P{\left( {1 + r} \right)^n}\) (với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn).
Lời giải chi tiết
Từ 16/8 đến 1/11 được tính là 77 ngày.
Ta có: \(P = 15,r = \frac{1}{{365}}.20\% ,n = 77\).
Do thời hạn nợ thẻ đã vượt quá 55 ngày miễn lãi nên chủ thẻ phải trả cả gốc và lãi là:
\({F_{77}} = 15.{\left( {1 + \frac{1}{{365}}.20\% } \right)^{77}} \approx 15,621\) (triệu đồng).
Bài 5 trang 38 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 38 Chuyên đề học tập Toán 12 - Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2.
Bước 1: Hàm số y = x3 - 3x2 + 2.
Bước 2: Đạo hàm cấp nhất: y' = 3x2 - 6x.
Bước 3: Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
Bước 4: Lập bảng biến thiên:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | NB | ĐC | TC |
Từ bảng biến thiên, ta thấy hàm số đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0, yCĐ = 2 và cực tiểu tại x = 2, yCT = -2.
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau:
Bài 5 trang 38 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và giải bài tập.