Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 64, 65 Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp các bài giải được trình bày rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải quyết các bài toán.
Chúng tôi hiểu rằng việc học toán đôi khi có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của chúng tôi đã biên soạn các lời giải chi tiết, kèm theo các lưu ý quan trọng để giúp các em hiểu sâu sắc hơn về bài học.
Thuyền trưởng Vinh gửi một tín hiệu vô tuyến từ thuyền đến trạm điều khiển. Xác suất để trạm điều khiển thu được tín hiệu vô tuyến là 0,8. Gọi \(X\) là số tín hiệu vô tuyến của thuyền trưởng Vinh được thu bởi trạm điều khiển. Hãy tính kì vọng và phương sai của \(X\).
Trả lời câu hỏi Luyện tập 1 trang 65 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Trong các biến ngẫu nhiên rời rạc sau, biến ngẫu nhiên rời rạc nào có phân bố Bernoulli? Xác định giá trị của tham số \(p\) và tính độ lệch chuẩn của các biến ngẫu nhiên rời rạc có phân bố Bernoulli đó.
a) \(X\) là số mặt 6 chấm xuất hiện khi gieo một con xúc xắc cân đối và đồng chất.
b) Gieo 2 con xúc xắc cân đối và đồng chất. Biến ngẫu nhiên rời rạc \(Y\) nhận giá trị bằng 1 nếu xuất hiện mặt 6 chấm, bằng 0 nếu không xuất hiện mặt nào 6 chấm.
c) Gieo 1 con xúc xắc cân đối và đồng chất, gọi \(Z\) là số dư khi chia số chấm xuất hiện cho 2.
d) Gieo 1 con xúc xắc cân đối và đồng chất, gọi \(T\) là số dư khi chia số chấm xuất hiện cho 3.
Phương pháp giải:
‒ Sử dụng khái niệm: Biến ngẫu nhiên rời rạc \(X\) được gọi là có phân bố Bernoulli với tham số \(p \in \left( {0;1} \right)\), kí hiệu là \(X \sim B{\rm{er}}\left( p \right)\), nếu \(X\) chỉ nhận hai giá trị là 0 và 1, và \(P\left( {X = 1} \right) = p;\)\(P\left( {X = 0} \right) = 1 - p\).
‒ Nếu \(X \sim B{\rm{er}}\left( p \right)\) thì \(E\left( X \right) = p\) và \(V\left( X \right) = p\left( {1 - p} \right)\).
Lời giải chi tiết:
a) \(X\) là phân bố Bernoulli vì nó nhận hai giá trị bằng 0 (nếu xuất hiện mặt 1, 2, 3, 4, 5 chấm) và 1 (nếu xuất hiện mặt 6 chấm).
Ta có: \(P\left( {X = 1} \right) = \frac{1}{6}\). Vậy \(p = \frac{1}{6}\).
Phương sai của \(X\): \(V\left( X \right) = p\left( {1 - p} \right) = \frac{1}{6}\left( {1 - \frac{1}{6}} \right) = \frac{5}{{36}}\).
Độ lệch chuẩn của \(X\): \(\sigma \left( X \right) = \sqrt {E\left( X \right)} = \sqrt {\frac{5}{{36}}} = \frac{{\sqrt 5 }}{6} \approx 0,373\).
b) \(Y\) là phân bố Bernoulli vì nó nhận hai giá trị bằng 0 (nếu không xuất hiện mặt nào 6 chấm) và 1 (nếu xuất hiện mặt 6 chấm).
Ta có: \(P\left( {Y = 1} \right) = \frac{{11}}{{36}}\). Vậy \(p = \frac{{11}}{{36}}\).
Phương sai của \(X\): \(V\left( Y \right) = p\left( {1 - p} \right) = \frac{{11}}{{36}}\left( {1 - \frac{{11}}{{36}}} \right) = \frac{{275}}{{1296}}\).
Độ lệch chuẩn của \(X\): \(\sigma \left( Y \right) = \sqrt {E\left( Y \right)} = \sqrt {\frac{{275}}{{1296}}} = \frac{{5\sqrt {11} }}{{36}} \approx 0,461\).
c) \(Z\) là phân bố Bernoulli vì nó nhận hai giá trị bằng 0 (nếu xuất hiện mặt 2, 4, 6 chấm) và 1 (nếu xuất hiện mặt 1, 3, 5 chấm).
Ta có: \(P\left( {Z = 1} \right) = \frac{3}{6} = \frac{1}{2}\). Vậy \(p = \frac{1}{2}\).
Phương sai của \(X\): \(V\left( Z \right) = p\left( {1 - p} \right) = \frac{1}{2}\left( {1 - \frac{1}{2}} \right) = \frac{1}{4}\).
Độ lệch chuẩn của \(X\): \(\sigma \left( Z \right) = \sqrt {E\left( Z \right)} = \sqrt {\frac{1}{4}} = \frac{1}{2} = 0,5\).
d) \(T\) nhận ba giá trị bằng 0 (nếu xuất hiện mặt 3, 6 chấm), 1 (nếu xuất hiện mặt 1, 4 chấm) và 3 (nếu xuất hiện mặt 2, 5 chấm). Vậy \(T\) không là phân bố Bernoulli.
Trả lời câu hỏi Hoạt động 1 trang 64 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Thuyền trưởng Vinh gửi một tín hiệu vô tuyến từ thuyền đến trạm điều khiển. Xác suất để trạm điều khiển thu được tín hiệu vô tuyến là 0,8. Gọi \(X\) là số tín hiệu vô tuyến của thuyền trưởng Vinh được thu bởi trạm điều khiển. Hãy tính kì vọng và phương sai của \(X\).
Phương pháp giải:
Giả sử biến ngẫu nhiên rời rạc \(X\) có bảng phân bố xác suất như sau:
Kì vọng của \(X\) được tính bởi công thức: \(E\left( X \right) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\).
Phương sai của \(X\) được tính bởi công thức: \(V\left( X \right) = x_1^2{p_1} + x_2^2{p_2} + ... + x_n^2{p_n} - {\left[ {E\left( X \right)} \right]^2}\).
Lời giải chi tiết:
Xác suất để trạm điều khiển thu được tín hiệu vô tuyến là 0,8.
Xác suất để trạm điều khiển không thu được tín hiệu vô tuyến là \(1 - 0,8 = 0,2\).
Bảng phân bố xác suất của \(X\):
Kì vọng của \(X\) là: \(E\left( X \right) = 0.0,2 + 1.0,8 = 0,8\).
Phương sai của \(X\) là: \(V\left( X \right) = {0^2}.0,2 + {1^2}.0,8 - {0,8^2} = 0,16\).
Trả lời câu hỏi Hoạt động 1 trang 64 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Thuyền trưởng Vinh gửi một tín hiệu vô tuyến từ thuyền đến trạm điều khiển. Xác suất để trạm điều khiển thu được tín hiệu vô tuyến là 0,8. Gọi \(X\) là số tín hiệu vô tuyến của thuyền trưởng Vinh được thu bởi trạm điều khiển. Hãy tính kì vọng và phương sai của \(X\).
Phương pháp giải:
Giả sử biến ngẫu nhiên rời rạc \(X\) có bảng phân bố xác suất như sau:
Kì vọng của \(X\) được tính bởi công thức: \(E\left( X \right) = {x_1}{p_1} + {x_2}{p_2} + ... + {x_n}{p_n}\).
Phương sai của \(X\) được tính bởi công thức: \(V\left( X \right) = x_1^2{p_1} + x_2^2{p_2} + ... + x_n^2{p_n} - {\left[ {E\left( X \right)} \right]^2}\).
Lời giải chi tiết:
Xác suất để trạm điều khiển thu được tín hiệu vô tuyến là 0,8.
Xác suất để trạm điều khiển không thu được tín hiệu vô tuyến là \(1 - 0,8 = 0,2\).
Bảng phân bố xác suất của \(X\):
Kì vọng của \(X\) là: \(E\left( X \right) = 0.0,2 + 1.0,8 = 0,8\).
Phương sai của \(X\) là: \(V\left( X \right) = {0^2}.0,2 + {1^2}.0,8 - {0,8^2} = 0,16\).
Trả lời câu hỏi Luyện tập 1 trang 65 Chuyên đề học tập Toán 12 Chân trời sáng tạo
Trong các biến ngẫu nhiên rời rạc sau, biến ngẫu nhiên rời rạc nào có phân bố Bernoulli? Xác định giá trị của tham số \(p\) và tính độ lệch chuẩn của các biến ngẫu nhiên rời rạc có phân bố Bernoulli đó.
a) \(X\) là số mặt 6 chấm xuất hiện khi gieo một con xúc xắc cân đối và đồng chất.
b) Gieo 2 con xúc xắc cân đối và đồng chất. Biến ngẫu nhiên rời rạc \(Y\) nhận giá trị bằng 1 nếu xuất hiện mặt 6 chấm, bằng 0 nếu không xuất hiện mặt nào 6 chấm.
c) Gieo 1 con xúc xắc cân đối và đồng chất, gọi \(Z\) là số dư khi chia số chấm xuất hiện cho 2.
d) Gieo 1 con xúc xắc cân đối và đồng chất, gọi \(T\) là số dư khi chia số chấm xuất hiện cho 3.
Phương pháp giải:
‒ Sử dụng khái niệm: Biến ngẫu nhiên rời rạc \(X\) được gọi là có phân bố Bernoulli với tham số \(p \in \left( {0;1} \right)\), kí hiệu là \(X \sim B{\rm{er}}\left( p \right)\), nếu \(X\) chỉ nhận hai giá trị là 0 và 1, và \(P\left( {X = 1} \right) = p;\)\(P\left( {X = 0} \right) = 1 - p\).
‒ Nếu \(X \sim B{\rm{er}}\left( p \right)\) thì \(E\left( X \right) = p\) và \(V\left( X \right) = p\left( {1 - p} \right)\).
Lời giải chi tiết:
a) \(X\) là phân bố Bernoulli vì nó nhận hai giá trị bằng 0 (nếu xuất hiện mặt 1, 2, 3, 4, 5 chấm) và 1 (nếu xuất hiện mặt 6 chấm).
Ta có: \(P\left( {X = 1} \right) = \frac{1}{6}\). Vậy \(p = \frac{1}{6}\).
Phương sai của \(X\): \(V\left( X \right) = p\left( {1 - p} \right) = \frac{1}{6}\left( {1 - \frac{1}{6}} \right) = \frac{5}{{36}}\).
Độ lệch chuẩn của \(X\): \(\sigma \left( X \right) = \sqrt {E\left( X \right)} = \sqrt {\frac{5}{{36}}} = \frac{{\sqrt 5 }}{6} \approx 0,373\).
b) \(Y\) là phân bố Bernoulli vì nó nhận hai giá trị bằng 0 (nếu không xuất hiện mặt nào 6 chấm) và 1 (nếu xuất hiện mặt 6 chấm).
Ta có: \(P\left( {Y = 1} \right) = \frac{{11}}{{36}}\). Vậy \(p = \frac{{11}}{{36}}\).
Phương sai của \(X\): \(V\left( Y \right) = p\left( {1 - p} \right) = \frac{{11}}{{36}}\left( {1 - \frac{{11}}{{36}}} \right) = \frac{{275}}{{1296}}\).
Độ lệch chuẩn của \(X\): \(\sigma \left( Y \right) = \sqrt {E\left( Y \right)} = \sqrt {\frac{{275}}{{1296}}} = \frac{{5\sqrt {11} }}{{36}} \approx 0,461\).
c) \(Z\) là phân bố Bernoulli vì nó nhận hai giá trị bằng 0 (nếu xuất hiện mặt 2, 4, 6 chấm) và 1 (nếu xuất hiện mặt 1, 3, 5 chấm).
Ta có: \(P\left( {Z = 1} \right) = \frac{3}{6} = \frac{1}{2}\). Vậy \(p = \frac{1}{2}\).
Phương sai của \(X\): \(V\left( Z \right) = p\left( {1 - p} \right) = \frac{1}{2}\left( {1 - \frac{1}{2}} \right) = \frac{1}{4}\).
Độ lệch chuẩn của \(X\): \(\sigma \left( Z \right) = \sqrt {E\left( Z \right)} = \sqrt {\frac{1}{4}} = \frac{1}{2} = 0,5\).
d) \(T\) nhận ba giá trị bằng 0 (nếu xuất hiện mặt 3, 6 chấm), 1 (nếu xuất hiện mặt 1, 4 chấm) và 3 (nếu xuất hiện mặt 2, 5 chấm). Vậy \(T\) không là phân bố Bernoulli.
Mục 1 của Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong chương trình, ví dụ như đạo hàm, tích phân, hoặc các bài toán về hình học không gian. Việc nắm vững kiến thức nền tảng và phương pháp giải quyết bài tập trong mục này là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Để hiểu rõ hơn về Mục 1 trang 64, 65, chúng ta cần xác định chính xác nội dung mà nó đề cập đến. Thông thường, các bài tập trong mục này sẽ xoay quanh các khái niệm và định lý đã được học trong chương. Ví dụ:
Để giải quyết các bài tập trong Mục 1 trang 64, 65 một cách hiệu quả, các em cần:
Bài tập: Tính đạo hàm của hàm số y = x3 - 2x2 + 5x - 1.
Lời giải:
Sử dụng quy tắc đạo hàm của tổng và hiệu, ta có:
y' = (x3)' - (2x2)' + (5x)' - (1)'
y' = 3x2 - 4x + 5
Trong quá trình giải bài tập, các em cần lưu ý:
Để hỗ trợ quá trình học tập và giải bài tập, các em có thể tham khảo các tài liệu sau:
Việc giải bài tập mục 1 trang 64, 65 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức lý thuyết, phương pháp giải quyết bài tập hiệu quả, và sự cẩn thận trong quá trình thực hiện. Hy vọng rằng với những hướng dẫn và ví dụ minh họa trên, các em sẽ tự tin hơn trong việc giải quyết các bài toán và đạt kết quả tốt trong môn Toán.