Logo Header
  1. Môn Toán
  2. Giải bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 12 trang 51 thuộc Chuyên đề học tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những phương pháp giải toán tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Ông Đạt đem gửi hai khoản tiền vào hai ngân hàng khác nhau. Khoản tiền thứ nhất gửi vào ngân hàng A trong 15 tháng, lãi suất 14%/năm. Khoản tiền thứ hai gửi vào ngân hàng B trong 12 tháng với lãi suất 12,5%/năm. Cho biết hai khoản tiền trên chênh lệch nhau 30 triệu đồng, lãi của khoản tiền thứ nhất gấp đôi lãi của khoản tiền thứ hai và cả hai khoản tiền đều tính lãi theo phương thức lãi đơn. Hãy tính khoản tiền ông Đạt gửi ở mỗi ngân hàng.

Đề bài

Ông Đạt đem gửi hai khoản tiền vào hai ngân hàng khác nhau. Khoản tiền thứ nhất gửi vào ngân hàng A trong 15 tháng, lãi suất 14%/năm. Khoản tiền thứ hai gửi vào ngân hàng B trong 12 tháng với lãi suất 12,5%/năm. Cho biết hai khoản tiền trên chênh lệch nhau 30 triệu đồng, lãi của khoản tiền thứ nhất gấp đôi lãi của khoản tiền thứ hai và cả hai khoản tiền đều tính lãi theo phương thức lãi đơn. Hãy tính khoản tiền ông Đạt gửi ở mỗi ngân hàng.

Phương pháp giải - Xem chi tiếtGiải bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 1

‒ Đặt \(x\) triệu đồng là khoản tiền ông Đạt gửi ở ngân hàng A. Tính số tiền lãi của cả hai khoản tiền theo phương thức lãi đơn, từ đó tìm \(x\).

‒ Lãi đơn: \({I_n} = P.r.n\) (với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn).

Lời giải chi tiết

Gọi \(x\) triệu đồng \(\left( {x > 30} \right)\) là khoản tiền ông Đạt gửi ở ngân hàng A.

Khi đó ông Đạt gửi ở ngân hàng B \(x - 30\) triệu đồng.

Số tiền lãi của khoản tiền thứ nhất là: \({I_1} = x.14\% .\frac{{15}}{{12}} = 0,175x\) (triệu đồng).

Số tiền lãi của khoản tiền thứ hai là: \({I_2} = \left( {x - 30} \right).12,5\% .1 = 0,125\left( {x - 30} \right)\) (triệu đồng).

Lãi của khoản tiền thứ nhất gấp đôi lãi của khoản tiền thứ hai nên ta có phương trình sau:

\(0,175x = 2.0,125\left( {x - 30} \right) \Leftrightarrow x = 100\).

Vậy ông Đạt đã gửi 100 triệu đồng vào ngân hàng A và 70 triệu đồng vào ngân hàng B.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích hàm số, tìm cực trị, và khảo sát sự biến thiên của hàm số. Việc nắm vững các khái niệm và kỹ năng liên quan đến đạo hàm là yếu tố then chốt để giải quyết thành công bài toán này.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 12 trang 51, học sinh cần xác định hàm số cần khảo sát, các điểm không xác định, và các khoảng biến thiên của hàm số. Việc phân tích đúng đề bài sẽ giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót không đáng có.

Phương pháp giải bài tập đạo hàm

Để giải bài tập đạo hàm hiệu quả, học sinh cần nắm vững các bước sau:

  1. Tính đạo hàm cấp một (f'(x)) của hàm số.
  2. Tìm các điểm dừng của hàm số (f'(x) = 0).
  3. Lập bảng biến thiên của hàm số.
  4. Xác định các khoảng đơn điệu của hàm số.
  5. Tìm cực trị của hàm số.
  6. Khảo sát giới hạn của hàm số tại vô cùng và các điểm không xác định.
  7. Vẽ đồ thị hàm số.

Lời giải chi tiết bài 12 trang 51

Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Cho hàm số y = x^3 - 3x^2 + 2. Khảo sát hàm số.)

Lời giải:

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm cấp một: y' = 3x^2 - 6x
  3. Tìm điểm dừng: 3x^2 - 6x = 0 => x = 0 hoặc x = 2
  4. Bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  5. Kết luận: Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, y = 2 và cực tiểu tại x = 2, y = -2.

Lưu ý khi giải bài tập đạo hàm

  • Luôn kiểm tra lại các bước tính toán để tránh sai sót.
  • Sử dụng công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.
  • Thực hành giải nhiều bài tập khác nhau để nắm vững kiến thức và kỹ năng.
  • Hiểu rõ ý nghĩa của đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm không chỉ là một công cụ quan trọng trong toán học mà còn có nhiều ứng dụng trong các lĩnh vực khác như vật lý, kinh tế, và kỹ thuật. Ví dụ, đạo hàm được sử dụng để tính vận tốc và gia tốc trong vật lý, để tối ưu hóa lợi nhuận trong kinh tế, và để thiết kế các hệ thống điều khiển trong kỹ thuật.

Tổng kết

Bài 12 trang 51 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong việc giải quyết bài toán này và các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 12