Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 70 thuộc Chuyên đề học tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin trong các kỳ thi.

Tỉ lệ phát bóng hỏng của một vận động viên bóng chuyền là 15%. Vận động viên đó thực hiện 40 quả phát bóng một cách độc lập với nhau. Gọi (X) là số quả phát bóng hỏng trong 40 quả đó. a) Tính kì vọng và phương sai của (X). b) Hỏi xác suất (X) nhận giá trị bằng bao nhiêu là lớn nhất?

Đề bài

Tỉ lệ phát bóng hỏng của một vận động viên bóng chuyền là 15%. Vận động viên đó thực hiện 40 quả phát bóng một cách độc lập với nhau. Gọi \(X\) là số quả phát bóng hỏng trong 40 quả đó.

a) Tính kì vọng và phương sai của \(X\).

b) Hỏi xác suất \(X\) nhận giá trị bằng bao nhiêu là lớn nhất?

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 1

Biến ngẫu nhiên rời rạc \(X\) có phân bố nhị thức \(B\left( {n;p} \right)\). Khi đó:

\(P\left( {X = k} \right) = {C}_n^k.{p^k}.{\left( {1 - p} \right)^{n - k}}\), với \(k = 0,1,...,n\); \(E\left( X \right) = np\) và \(V\left( X \right) = np\left( {1 - p} \right)\).

Lời giải chi tiết

Gọi \(T\) là phép thử: “Vận động viên thực hiện phát bóng” và \(A\) là biến cố: “Vận động viên đó phát bóng hỏng”. Gọi \(X\) là số lần xảy ra biến cố \(A\) khi lặp lại 40 lần phép thử \(T\).

Do phép thử \(T\) được thực hiện 40 lần một cách độc lập với nhau và xác suất xảy ra biến cố \(A\) mỗi lần thử là 0,15 nên \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức \(B\left( {40;0,15} \right)\).

a) Kì vọng của \(X\) là: \(E\left( X \right) = 40.0,15 = 6\).

Phương sai của \(X\) là: \(E\left( X \right) = 40.0,15\left( {1 - 0,15} \right) = 5,1\).

b) Giả sử xác suất \(X\) nhận giá trị bằng \(k\) là lớn nhất. Ta có:

\(P\left( {X = k} \right) = {C}_{40}^k{.0,15^k}.{\left( {1 - 0,15} \right)^{40 - k}} = {C}_{40}^k{.0,15^k}{.0,85^{40 - k}} = {C}_{40}^k.{\left( {\frac{{0,15}}{{0,85}}} \right)^k}{.0,85^{40}} = {C}_{40}^k{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}\)

Khi đó \(P\left( {X = k + 1} \right) = {C}_{40}^{k + 1}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^{k + 1}}\)

TH1: \(P\left( {X = k} \right) > P\left( {X = k + 1} \right)\). Ta có:

\(\begin{array}{l}{C}_{40}^k{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}{ > C}_{40}^{k + 1}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^{k + 1}}\\ \Leftrightarrow \frac{{40!}}{{k!\left( {40 - k} \right)!}}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k} - \frac{{40!}}{{\left( {k + 1} \right)!\left( {40 - k - 1} \right)!}}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}.\frac{3}{{17}} > 0\\ \Leftrightarrow \frac{{40!}}{{k!\left( {39 - k} \right)!}}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}\left( {\frac{1}{{40 - k}} - \frac{3}{{17}}.\frac{1}{{k + 1}}} \right) > 0\\ \Leftrightarrow \frac{1}{{40 - k}} - \frac{3}{{17}}.\frac{1}{{k + 1}} > 0 \Leftrightarrow \frac{{17\left( {k + 1} \right) - 3\left( {40 - k} \right)}}{{17\left( {k + 1} \right)\left( {40 - k} \right)}} > 0 \Leftrightarrow 20k - 103 > 0 \Leftrightarrow k > \frac{{103}}{{20}} \approx 5,15\end{array}\)

Khi đó: \(P\left( {X = 6} \right) > P\left( {X = 7} \right) > ... > P\left( {X = 40} \right)\)

TH2: \(P\left( {X = k} \right) < P\left( {X = k + 1} \right)\). Ta có:

\(\begin{array}{l}{C}_{40}^k{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}{ < C}_{40}^{k + 1}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^{k + 1}}\\ \Leftrightarrow \frac{{40!}}{{k!\left( {40 - k} \right)!}}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k} - \frac{{40!}}{{\left( {k + 1} \right)!\left( {40 - k - 1} \right)!}}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}.\frac{3}{{17}} < 0\\ \Leftrightarrow \frac{{40!}}{{k!\left( {39 - k} \right)!}}{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^k}\left( {\frac{1}{{40 - k}} - \frac{3}{{17}}.\frac{1}{{k + 1}}} \right) < 0\\ \Leftrightarrow \frac{1}{{40 - k}} - \frac{3}{{17}}.\frac{1}{{k + 1}} < 0 \Leftrightarrow \frac{{17\left( {k + 1} \right) - 3\left( {40 - k} \right)}}{{17\left( {k + 1} \right)\left( {40 - k} \right)}} < 0 \Leftrightarrow 20k - 103 < 0 \Leftrightarrow k < \frac{{103}}{{20}} \approx 5,15\end{array}\)

Khi đó: \(P\left( {X = 0} \right) < P\left( {X = 1} \right) < ... < P\left( {X = 5} \right)\)

Ta có: \(P\left( {X = 5} \right) = {C}_{40}^5{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^5} \approx 0,169\) và \(P\left( {X = 6} \right) = {C}_{40}^6{.0,85^{40}}.{\left( {\frac{3}{{17}}} \right)^6} \approx 0,174\)

Do đó \(P\left( {X = 5} \right) < P\left( {X = 6} \right)\)

Khi đó \(P\left( {X = 0} \right) < P\left( {X = 1} \right) < ... < P\left( {X = 5} \right) < P\left( {X = 6} \right) > P\left( {X = 7} \right) > ... > P\left( {X = 40} \right)\)

Vậy xác suất \(X\) nhận giá trị bằng 6 là cao nhất.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình Toán 12, ví dụ như đạo hàm, tích phân, số phức, hoặc hình học không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững kiến thức lý thuyết liên quan, hiểu rõ các định nghĩa, định lý và công thức quan trọng. Đồng thời, việc luyện tập thường xuyên với các bài tập tương tự cũng đóng vai trò quan trọng trong việc củng cố kiến thức và kỹ năng giải toán.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này bao gồm việc xác định các thông tin đã cho, các đại lượng cần tìm, và các điều kiện ràng buộc. Việc phân tích đề bài một cách cẩn thận sẽ giúp bạn tránh được những sai sót không đáng có và tìm ra hướng giải quyết phù hợp.

Các bước giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo (Ví dụ minh họa)

Để minh họa, chúng ta sẽ giả sử bài 4 trang 70 yêu cầu tính đạo hàm của một hàm số phức tạp. Dưới đây là các bước giải bài:

  1. Bước 1: Xác định hàm số cần tính đạo hàm. Ví dụ: f(x) = x^3 + 2x^2 - 5x + 1
  2. Bước 2: Áp dụng các quy tắc đạo hàm cơ bản. Sử dụng quy tắc đạo hàm của tổng, hiệu, tích, thương, và quy tắc chuỗi để tính đạo hàm của từng thành phần trong hàm số.
  3. Bước 3: Tính đạo hàm của từng thành phần.
    • Đạo hàm của x^3 là 3x^2
    • Đạo hàm của 2x^2 là 4x
    • Đạo hàm của -5x là -5
    • Đạo hàm của 1 là 0
  4. Bước 4: Kết hợp các kết quả để tìm đạo hàm của hàm số. f'(x) = 3x^2 + 4x - 5
  5. Bước 5: Kiểm tra lại kết quả. Đảm bảo rằng kết quả đạo hàm của bạn là chính xác và phù hợp với các quy tắc đạo hàm đã học.

Các dạng bài tập thường gặp trong Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường bao gồm các dạng bài tập sau:

  • Bài tập về đạo hàm: Tính đạo hàm của các hàm số đơn thức, đa thức, hàm lượng giác, hàm mũ, hàm logarit.
  • Bài tập về tích phân: Tính tích phân xác định và tích phân bất định.
  • Bài tập về số phức: Thực hiện các phép toán trên số phức, tìm nghiệm của phương trình bậc hai với hệ số phức.
  • Bài tập về hình học không gian: Tính khoảng cách giữa hai điểm, giữa điểm và mặt phẳng, giữa hai mặt phẳng.

Mẹo giải bài tập Toán 12 hiệu quả

Để giải bài tập Toán 12 hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững kiến thức lý thuyết: Đảm bảo rằng bạn hiểu rõ các định nghĩa, định lý và công thức quan trọng.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để củng cố kiến thức và kỹ năng giải toán.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi, phần mềm giải toán, hoặc các trang web học toán online để kiểm tra kết quả và tìm kiếm lời giải.
  • Học hỏi từ các bạn: Trao đổi kiến thức và kinh nghiệm với các bạn cùng lớp để hiểu rõ hơn về các bài toán khó.

Tài liệu tham khảo hữu ích

Dưới đây là một số tài liệu tham khảo hữu ích cho việc học Toán 12:

  • Sách giáo khoa Toán 12 - Chân trời sáng tạo
  • Sách bài tập Toán 12 - Chân trời sáng tạo
  • Các trang web học toán online như giaitoan.edu.vn, loigiaihay.com, vted.vn

Kết luận

Giải bài 4 trang 70 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức lý thuyết, kỹ năng giải toán, và sự luyện tập thường xuyên. Hy vọng rằng với những hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong việc giải quyết các bài toán Toán 12 và đạt được kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12