Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 6 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng giaitoan.edu.vn khám phá lời giải bài tập này nhé!
Trường A có các ngành học với các gói học phí như sau: Gói 1: 150 triệu đồng; Gói 2: 200 triệu đồng, Gói 3: 250 triệu đồng; Gói 4: 300 triệu đồng. Để chuẩn bị tiền sau 3 năm nữa cho con lựa chọn ngành học phù hợp với các gói học phí như trên, ông Đức đã gửi 1 tỉ đồng vào ngân hàng theo phương thức tính lãi kép với lãi suất 8%/năm, kì trả lãi 1 năm. Với số tiền lãi ông Đức nhận được sau 3 năm, số nguyện vọng tối đa mà con ông Đức có thể chọn được phù hợp với các gói học phí trên là A. 1.
Đề bài
Trường A có các ngành học với các gói học phí như sau:
Gói 1: 150 triệu đồng; Gói 2: 200 triệu đồng,
Gói 3: 250 triệu đồng; Gói 4: 300 triệu đồng.
Để chuẩn bị tiền sau 3 năm nữa cho con lựa chọn ngành học phù hợp với các gói học phí như trên, ông Đức đã gửi 1 tỉ đồng vào ngân hàng theo phương thức tính lãi kép với lãi suất 8%/năm, kì trả lãi 1 năm. Với số tiền lãi ông Đức nhận được sau 3 năm, số nguyện vọng tối đa mà con ông Đức có thể chọn được phù hợp với các gói học phí trên là
A. 1.
B. 2.
C. 3.
D. 4.
Phương pháp giải - Xem chi tiết
Lãi kép: \({I_n} = P\left[ {{{\left( {1 + r} \right)}^n} - 1} \right]\) (với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn).
Lời giải chi tiết
Tổng số tiền cả gốc và lãi ông Đức nhận được sau 3 năm là:
\({I_3} = P\left[ {{{\left( {1 + r} \right)}^3} - 1} \right] = 1.\left[ {{{\left( {1 + 8\% } \right)}^3} - 1} \right] = 0,259712\) (tỉ đồng) \(259,712\) (triệu đồng).
Vậy ông Đức có thể lựa chọn gói 1, gói 2 và gói 3.
Chọn C
Bài 6 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 6 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:
Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy tìm đạo hàm f'(x).
Lời giải:
Áp dụng quy tắc tính đạo hàm của tổng và lũy thừa, ta có:
f'(x) = 3x2 - 6x
Giải phương trình f'(x) = 0 với f'(x) = 3x2 - 6x.
Lời giải:
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
Xác định khoảng đơn điệu của hàm số y = f(x) = x3 - 3x2 + 2.
Lời giải:
Ta có f'(x) = 3x2 - 6x = 3x(x - 2)
Lập bảng xét dấu f'(x):
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Ngoài sách giáo khoa, các em có thể tham khảo thêm các tài liệu sau:
Bài 6 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin hơn khi giải quyết các bài toán tương tự.