Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 50 thuộc Chuyên đề học tập Toán 12 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.

Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Nếu đầu năm bạn gửi 100 triệu đồng vào ngân hàng với lãi suất danh nghĩa là 9%/năm, tỉ lệ lạm phát là 3%. Số tiền (triệu đồng) bạn nhận được cuối năm tương đương với số tiền lúc đầu năm là A. 103. B. 109. C. 112. D. 106.

Đề bài

Nếu đầu năm bạn gửi 100 triệu đồng vào ngân hàng với lãi suất danh nghĩa là 9%/năm, tỉ lệ lạm phát là 3%. Số tiền (triệu đồng) bạn nhận được cuối năm tương đương với số tiền lúc đầu năm là

A. 103.

B. 109.

C. 112.

D. 106.

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 1

‒ Giá trị cả vốn lẫn lãi sau \(n\) chu kì lãi kép: \({F_n} = P{\left( {1 + r} \right)^n}\) (với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn).

‒ Nếu tỉ lệ lạm phát của năm sau so với năm trước là \(i\) thì \(A\) đồng của năm sau có giá trị tương đương với \(\frac{A}{{1 + i}}\) trước và ngược lại \(A\) đồng của năm trước có giá trị tương đương với \(A\left( {1 + i} \right)\) đồng của năm sau.

Lời giải chi tiết

Số tiền bạn nhận được cuối năm là: \(F = P{\left( {1 + r} \right)^n} = 100{\left( {1 + 9\% } \right)^1} = 109\) (triệu đồng).

Số tiền bạn nhận được cuối năm tương đương với: \(\frac{{109}}{{1 + 3\% }} \approx 106\) triệu đồng vào thời điểm đầu năm.

Chọn D

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng toán math. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo: Tổng quan

Bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình Toán 12, ví dụ như đạo hàm, tích phân, số phức, hoặc hình học không gian. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững kiến thức lý thuyết liên quan, hiểu rõ các định nghĩa, định lý và công thức quan trọng. Đồng thời, việc luyện tập thường xuyên với các bài tập tương tự cũng đóng vai trò quan trọng trong việc củng cố kiến thức và kỹ năng giải toán.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này bao gồm việc xác định các dữ kiện đã cho, các điều kiện ràng buộc, và mục tiêu cần đạt được. Việc phân tích đề bài một cách cẩn thận sẽ giúp bạn tránh được những sai sót không đáng có và tìm ra phương pháp giải phù hợp.

Phương pháp giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Tùy thuộc vào nội dung cụ thể của bài toán, có nhiều phương pháp giải khác nhau có thể được áp dụng. Dưới đây là một số phương pháp phổ biến:

  • Phương pháp đại số: Sử dụng các phép biến đổi đại số để tìm ra nghiệm của phương trình hoặc biểu thức.
  • Phương pháp hình học: Sử dụng các kiến thức về hình học để giải quyết bài toán.
  • Phương pháp tích phân: Sử dụng các kỹ thuật tích phân để tính diện tích, thể tích, hoặc các đại lượng khác.
  • Phương pháp đạo hàm: Sử dụng đạo hàm để tìm cực trị, điểm uốn, hoặc các đặc điểm khác của hàm số.

Ví dụ minh họa giải bài 4 trang 50 (Giả định)

Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

  1. Tính đạo hàm bậc nhất: y' = 3x2 - 6x
  2. Tìm điểm dừng: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Tính đạo hàm bậc hai: y'' = 6x - 6
  4. Xác định điểm cực trị:
    • Tại x = 0, y'' = -6 < 0, hàm số đạt cực đại tại x = 0, y = 2.
    • Tại x = 2, y'' = 6 > 0, hàm số đạt cực tiểu tại x = 2, y = -2.

Kết luận: Hàm số y = x3 - 3x2 + 2 đạt cực đại tại điểm (0, 2) và cực tiểu tại điểm (2, -2).

Lưu ý khi giải bài tập Toán 12

Để đạt được kết quả tốt nhất khi giải bài tập Toán 12, bạn nên lưu ý những điều sau:

  • Nắm vững kiến thức lý thuyết: Đảm bảo bạn hiểu rõ các định nghĩa, định lý và công thức liên quan đến bài toán.
  • Luyện tập thường xuyên: Giải nhiều bài tập tương tự để củng cố kiến thức và kỹ năng.
  • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng các công cụ hỗ trợ: Nếu cần thiết, bạn có thể sử dụng máy tính bỏ túi hoặc các phần mềm toán học để hỗ trợ giải toán.

Tài liệu tham khảo hữu ích

Để học tập Toán 12 hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Chân trời sáng tạo
  • Sách bài tập Toán 12 - Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Giải bài 4 trang 50 Chuyên đề học tập Toán 12 - Chân trời sáng tạo đòi hỏi sự nắm vững kiến thức lý thuyết, kỹ năng giải toán và sự luyện tập thường xuyên. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết bài toán và đạt được kết quả tốt nhất trong học tập.

Tài liệu, đề thi và đáp án Toán 12