Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn giải bài 11 trang 23 một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Cho mạch điện có sơ đồ như Hình 4. Nguồn điện có suất điện động (E = 4V) và điện trở trong (r = 2{Omega }). Điện trở ở mạch ngoài là (Rleft({Omega } right)) thay đổi. Cường độ dòng điện (Ileft( A right)) chạy trong mạch và công suất (Pleft( W right)) của dòng điện ở mạch ngoài được tính lần lượt theo các công thức (I = frac{E}{{r + R}}) và (P = {I^2}R) (Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 49, 51). Điện trở (R) bằng bao nhiêu thì công suất (P
Đề bài
Cho mạch điện có sơ đồ như Hình 4. Nguồn điện có suất điện động \(E = 4V\) và điện trở trong \(r = 2{\Omega }\). Điện trở ở mạch ngoài là \(R\left({\Omega } \right)\) thay đổi. Cường độ dòng điện \(I\left( A \right)\) chạy trong mạch và công suất \(P\left( W \right)\) của dòng điện ở mạch ngoài được tính lần lượt theo các công thức\(I = \frac{E}{{r + R}}\) và \(P = {I^2}R\)(Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 49, 51).Điện trở \(R\) bằng bao nhiêu thì công suất \(P\) có giá trị lớn nhất? Tính giá trị lớn nhất đó.
Phương pháp giải - Xem chi tiết
• Tìm mối quan hệ giữa \(R,P\), biểu thị công suất \(P\) thông qua các đại lượng đã biết và ẩn.
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:
‒ Lập bảng biến thiên của hàm số trên tập hợp đó.
‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.
Lời giải chi tiết
Ta có: \(I = \frac{4}{{2 + R}};P = {I^2}R = {\left( {\frac{4}{{2 + R}}} \right)^2}.R = \frac{{16R}}{{{{\left( {R + 2} \right)}^2}}}\)
Xét hàm số \(P\left( R \right) = \frac{{16R}}{{{{\left( {R + 2} \right)}^2}}}\) trên khoảng \(\left( {0; + \infty } \right)\).
Ta có:
\(\begin{array}{l}P'\left( R \right) = \frac{{{{\left( {16R} \right)}^\prime }.{{\left( {R + 2} \right)}^2} - 16R.{{\left[ {{{\left( {R + 2} \right)}^2}} \right]}^\prime }}}{{{{\left( {R + 2} \right)}^4}}} = \frac{{16{{\left( {R + 2} \right)}^2} - 16R.2\left( {R + 2} \right)}}{{{{\left( {R + 2} \right)}^4}}}\\ = \frac{{16\left( {R + 2} \right) - 32R}}{{{{\left( {R + 2} \right)}^3}}} = \frac{{16\left( {2 - R} \right)}}{{{{\left( {R + 2} \right)}^3}}}\end{array}\)
\(P'\left( R \right) = 0 \Leftrightarrow \frac{{16\left( {2 - R} \right)}}{{{{\left( {R + 2} \right)}^3}}} = 0 \Leftrightarrow R = 2\).
Bảng biến thiên của hàm số trên khoảng \(\left( {0; + \infty } \right)\):
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{\left( {0; + \infty } \right)} P\left( R \right) = P\left( 2 \right) = 2\).
Vậy công suất \(P\) có giá trị lớn nhất khi điện trở \(R = 2\left( {\Omega } \right)\).
Bài 11 trang 23 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phân tích hàm số, tìm điểm cực trị, và khảo sát sự biến thiên của hàm số. Việc nắm vững các khái niệm và kỹ năng liên quan đến đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, đề bài sẽ yêu cầu chúng ta thực hiện một hoặc nhiều công việc sau:
Để giải bài tập đạo hàm một cách hiệu quả, chúng ta có thể áp dụng các phương pháp sau:
(Nội dung lời giải chi tiết bài 11 trang 23 sẽ được trình bày tại đây, bao gồm các bước giải cụ thể, giải thích rõ ràng và minh họa bằng hình ảnh nếu cần thiết. Ví dụ:)
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm điểm cực trị của hàm số.
Lời giải:
Để củng cố kiến thức và kỹ năng giải bài tập đạo hàm, bạn có thể luyện tập thêm với các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Bài 11 trang 23 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải bài tập đạo hàm. Hy vọng rằng, với lời giải chi tiết và phương pháp giải hiệu quả được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.