Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập Toán 12 Chuyên đề học tập - Chân trời sáng tạo. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 4 trang 32, giúp bạn hiểu rõ kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, giúp bạn tự tin chinh phục môn Toán.
Nếu tỉ lệ lạm phát hằng năm là 4% thì bao nhiêu năm nữa 1 tỉ đồng chỉ còn một nửa giá trị.
Đề bài
Nếu tỉ lệ lạm phát hằng năm là 4% thì bao nhiêu năm nữa 1 tỉ đồng chỉ còn một nửa giá trị.
Phương pháp giải - Xem chi tiết
Sử dụng công thức lãi kép: \({F_n} = P{\left( {1 + r} \right)^n}\) (với \(P\): vốn gốc, \(r\): lãi suất trên một kì hạn, \(n\): số kì hạn).
Lời giải chi tiết
Gọi \(n\) là số năm cần tìm. Ta có: \(1.{\left( {1 + 4\% } \right)^n} = 2 \Leftrightarrow n = \frac{{\ln 2}}{{\ln \left( {1 + 4\% } \right)}} \approx 18\) (năm).
Vậy khoảng 18 năm nữa, 1 tỉ đồng chỉ còn một nửa giá trị.
Bài 4 trang 32 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh nắm vững các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, bài tập này sẽ yêu cầu chúng ta:
Để giải bài 4 trang 32, chúng ta sẽ thực hiện theo các bước sau:
Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta sẽ áp dụng các bước trên để giải bài tập:
Bước 1: f'(x) = 3x2 - 6x
Bước 2: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 3: f''(x) = 6x - 6. f''(0) = -6 < 0 => x = 0 là điểm cực đại. f''(2) = 6 > 0 => x = 2 là điểm cực tiểu.
Bước 4: f'(x) > 0 khi x < 0 hoặc x > 2 => Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞). f'(x) < 0 khi 0 < x < 2 => Hàm số nghịch biến trên khoảng (0, 2).
Khi giải bài tập về đạo hàm, bạn cần lưu ý những điều sau:
Bài 4 trang 32 Chuyên đề học tập Toán 12 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của nó. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài tập một cách hiệu quả. Chúc bạn học tốt!
Quy tắc | Ví dụ |
---|---|
Đạo hàm của hằng số | (c)' = 0 |
Đạo hàm của xn | (xn)' = nxn-1 |