Logo Header
  1. Môn Toán
  2. Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều

Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều

Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết Bài 13 trang 93 sách bài tập Toán 7 tập 1 - Cánh diều. Bài viết này được giaitoan.edu.vn biên soạn nhằm hỗ trợ các em ôn tập và nắm vững kiến thức toán học.

Chúng tôi sẽ cung cấp đáp án từng câu hỏi, kèm theo phương pháp giải rõ ràng, dễ hiểu, giúp các em tự tin giải quyết các bài tập tương tự. Hãy cùng bắt đầu nhé!

Cho hình lăng trụ đứng tứ giác ABCD.MNPQ có đáy là hình thang vuông ABCD vuông tại B (AD song song với BC) với

Đề bài

Cho hình lăng trụ đứng tứ giác ABCD.MNPQ có đáy là hình thang vuông ABCD vuông tại B (AD song song với BC) với \(AB = 20{\rm{ cm}}\), \(AD = 11{\rm{ cm}}\), \(BC = 15{\rm{ cm}}\) (Hình 21).

a) Tính tỉ số giữa thể tích của hình lăng trụ đứng tam giác ABC.MNP và thể tích của hình lăng trụ đứng tứ giác ABCD.MNPQ.

b) Tính tỉ số phần trăm giữa thể tích của hình lăng trụ đứng tam giác ABD.MNQ và thể tích của hình lăng trụ đứng tam giác BCD.NPQ.

c) So sánh thể tích của hai hình lăng trụ đứng tam giác ABD.MNQACD.MPQ.

Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều 2

a) Để tính tỉ số giữa thể tích của hình lăng trụ đứng tam giác ABC.MNP và thể tích của hình lăng trụ đứng tứ giác ABCD.MNPQ, ta cần tính diện tích hai đáy tương ứng với hai hình.

b) Để tính tỉ số phần trăm giữa thể tích của hình lăng trụ đứng tam giác ABD.MNQ và thể tích của hình lăng trụ đứng tam giác BCD.NPQ, ta cần tính diện tích hai đáy tương ứng với hai hình rồi nhân với 100%.

c) Muốn so sánh thể tích của hai hình lăng trụ, ta so sánh diện tích và chiều cao tương ứng của hai hình với nhau.

Lời giải chi tiết

a) Ta có:

\({S_{ABC}} = \dfrac{{20{\rm{ }}.{\rm{ }}15}}{2} = 150{\rm{ (c}}{{\rm{m}}^2});\\{S_{ABCD}} = \dfrac{{(11 + 15){\rm{ }}.{\rm{ }}20}}{2} = 260{\rm{ (c}}{{\rm{m}}^2}).\)

Tỉ số giữa thể tích của hình lăng trụ đứng tam giác ABC.MNP và thể tích của hình lăng trụ đứng tứ giác ABCD.MNPQ là:

\(\dfrac{{{V_{ABC.MNP}}}}{{{V_{ABCD.MNPQ}}}} = \dfrac{{{S_{ABC}}{\rm{ }}.{\rm{ }}BN}}{{{S_{ABCD}}{\rm{ }}.{\rm{ }}BN}} \\= \dfrac{{{S_{ABC}}}}{{{S_{ABCD}}}} = \dfrac{{150}}{{260}} = \dfrac{{15}}{{26}}.\)

b) Ta có:

\({S_{ABD}} = \dfrac{{20{\rm{ }}.{\rm{ }}11}}{2} = 110{\rm{ (c}}{{\rm{m}}^2});\\{S_{BCD}} = \dfrac{{15{\rm{ }}.{\rm{ }}20}}{2} = 150{\rm{ (c}}{{\rm{m}}^2}).\)

Tỉ số phần trăm giữa thể tích của hình lăng trụ đứng tam giác ABD.MNQ và thể tích của hình lăng trụ đứng tam giác BCD.NPQ là:

\(\dfrac{{{V_{ABD.MNQ}}{\rm{ }}.{\rm{ }}100\% }}{{{V_{BCD.NPQ}}}} = \dfrac{{{S_{ABD}}{\rm{ }}.{\rm{ }}BN{\rm{ }}.{\rm{ }}100\% }}{{{S_{BCD}}{\rm{ }}.{\rm{ }}BN}} \\ = \dfrac{{{S_{ABD}}{\rm{ }}.{\rm{ }}100\% }}{{{S_{BCD}}}} = \dfrac{{110{\rm{ }}.{\rm{ }}100\% }}{{150}} = 73,(3)\% .\)

c) Ta có:

\({S_{ABC}} = 150{\rm{ (c}}{{\rm{m}}^2});\\{S_{ACD}} = {S_{ABCD}} - {S_{ABC}} = 260 - 150 = 110{\rm{ (c}}{{\rm{m}}^2}).\)

\({S_{ABD}} = 110{\rm{ (c}}{{\rm{m}}^2})\).

Suy ra:

\(\begin{array}{l}{S_{ACD}} = {S_{ABD}}\\ \Rightarrow {S_{ACD}}{\rm{ }}.{\rm{ }}BN = {S_{ABD}}{\rm{ }}.{\rm{ }}BN\\ \Rightarrow {V_{ABD.MNQ}} = {V_{ACD.MPQ}}\end{array}\)

Vậy thể tích của hai hình lăng trụ đứng tam giác ABD.MNQACD.MPQ bằng nhau.

Khai phá tiềm năng Toán lớp 7 của bạn! Đừng bỏ lỡ Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều tại chuyên mục toán 7 trên toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, cập nhật chính xác theo chương trình sách giáo khoa, các em sẽ tự tin ôn luyện, củng cố kiến thức vững chắc và nâng cao khả năng tư duy. Phương pháp học trực quan, sinh động sẽ mang lại hiệu quả học tập vượt trội mà bạn hằng mong muốn!

Giải Bài 13 trang 93 sách bài tập toán 7 tập 1 - Cánh diều: Tổng quan

Bài 13 trang 93 sách bài tập Toán 7 tập 1 - Cánh diều thuộc chương trình học Toán 7, tập trung vào việc ôn tập và củng cố các kiến thức về biểu thức đại số, các phép toán với số hữu tỉ, và các tính chất của phép cộng, phép trừ, phép nhân, phép chia.

Nội dung chi tiết Bài 13

Bài 13 bao gồm các dạng bài tập sau:

  • Dạng 1: Tính giá trị của biểu thức đại số. Các em cần thay giá trị của biến vào biểu thức và thực hiện các phép toán để tìm ra kết quả.
  • Dạng 2: Rút gọn biểu thức đại số. Các em cần sử dụng các tính chất của phép toán để biến đổi biểu thức về dạng đơn giản nhất.
  • Dạng 3: Giải bài toán có sử dụng biểu thức đại số. Các em cần phân tích bài toán, lập biểu thức đại số, và giải phương trình để tìm ra đáp án.

Hướng dẫn giải chi tiết từng bài tập

Bài 1: Tính giá trị của biểu thức

Ví dụ: Tính giá trị của biểu thức 3x + 2y khi x = 2 và y = -1.

Giải:

Thay x = 2 và y = -1 vào biểu thức, ta được:

3x + 2y = 3 * 2 + 2 * (-1) = 6 - 2 = 4

Vậy giá trị của biểu thức là 4.

Bài 2: Rút gọn biểu thức

Ví dụ: Rút gọn biểu thức 5x - 3x + 2x.

Giải:

5x - 3x + 2x = (5 - 3 + 2)x = 4x

Vậy biểu thức được rút gọn là 4x.

Bài 3: Giải bài toán

Ví dụ: Một cửa hàng có x sản phẩm. Sau khi bán được 1/3 số sản phẩm, cửa hàng còn lại bao nhiêu sản phẩm?

Giải:

Số sản phẩm đã bán là x/3.

Số sản phẩm còn lại là x - x/3 = 2x/3.

Vậy cửa hàng còn lại 2x/3 sản phẩm.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài để hiểu rõ yêu cầu.
  • Sử dụng đúng các quy tắc và tính chất của phép toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo

Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 7 tập 1 - Cánh diều
  • Các trang web học toán online uy tín
  • Các video hướng dẫn giải bài tập Toán 7

Kết luận

Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, các em sẽ tự tin hơn trong việc học Toán 7. Chúc các em học tốt và đạt kết quả cao!

Tài liệu, đề thi và đáp án Toán 7