Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho Bài 80 trang 92 sách bài tập Toán 7 - Cánh diều. Bài viết này sẽ giúp bạn nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic, kèm theo các ví dụ minh họa để bạn dễ dàng tiếp thu. Hãy cùng bắt đầu nhé!
Cho tam giác ABC có \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC}\). Hai tia phân giác của góc B và góc C cắt nhau tại K. Trong các phát biểu sau, phát biểu nào sai?
Đề bài
Cho tam giác ABC có \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC}\). Hai tia phân giác của góc B và góc C cắt nhau tại K. Trong các phát biểu sau, phát biểu nào sai?
a) Số đo góc KAC bằng 30°.
b) Số đo góc BAK bằng 25°.
c) Số đo góc BKC bằng 120°.
d) Số đo góc BKC bằng 115°.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất tia phân giác của một góc để xác định các phát biểu đúng sai.
Lời giải chi tiết
• Xét ∆ABC có \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = 180^\circ \) (tổng ba góc của một tam giác)
Mà \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC}\) nên \(3\widehat {BAC} = 180^\circ \)
Suy ra \(\widehat {BAC} = \frac{{180^\circ }}{3} = 60^\circ \)
Xét tam giác ABC có hai tia phân giác của góc B và góc C cắt nhau tại K
Nên AK là tia phân giác của góc BAC.
Suy ra \(\widehat {KAB} = \widehat {KAC} = \frac{1}{2}\widehat {BAC} = \frac{{60^\circ }}{2} = 30^\circ \)
Do đó phát biểu a là đúng, phát biểu b là sai.
•Vì BK là tia phân giác của góc ABC nên \(\widehat {KBC} = \widehat {KBA} = \frac{1}{2}\widehat {ABC}\)
Vì CK là tia phân giác của góc ACB nên \(\widehat {KCB} = \widehat {KCA} = \frac{1}{2}\widehat {ACB}\)
Suy ra \(\widehat {KBC} + \widehat {KCB} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB}\)
Mà \(\widehat {ABC} + \widehat {ACB} = 2\widehat {BAC} = 2.60^\circ = 120^\circ \)
Do đó \(\widehat {KBC} + \widehat {KCB} = \frac{1}{2}\left( {\widehat {ABC} + \widehat {ACB}} \right) = \frac{{120^\circ }}{2} = 60^\circ \)
Xét ∆KBC có \(\widehat {KBC} + \widehat {KCB} + \widehat {CKB} = 180^\circ \) (tổng ba góc của một tam giác)
Nên \(\widehat {CKB} = 180^\circ - \left( {\widehat {KBC} + \widehat {KCB}} \right) = 180^\circ - 60^\circ = 120^\circ \).
Do đó phát biểu c là đúng, phát biểu d là sai.
Vậy phát biểu sai là b và d.
Bài 80 trang 92 sách bài tập Toán 7 - Cánh diều thuộc chương trình học Toán 7, tập trung vào việc ôn tập và củng cố kiến thức về các phép toán với số hữu tỉ, biểu thức đại số và các bài toán thực tế liên quan. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các vấn đề cụ thể, rèn luyện kỹ năng tính toán và tư duy logic.
Bài 80 thường bao gồm các dạng bài tập sau:
Để giải các bài tập về tính toán với số hữu tỉ, bạn cần nắm vững các quy tắc sau:
Ví dụ: Tính (-2/3) + (1/2)
Giải:
(-2/3) + (1/2) = (-4/6) + (3/6) = -1/6
Để rút gọn biểu thức đại số, bạn cần áp dụng các quy tắc sau:
Ví dụ: Rút gọn biểu thức 2x + 3y - x + 5y
Giải:
2x + 3y - x + 5y = (2x - x) + (3y + 5y) = x + 8y
Khi giải các bài toán thực tế, bạn cần:
Bài 80 trang 92 sách bài tập Toán 7 - Cánh diều là một bài tập quan trọng giúp bạn củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và các mẹo giải hiệu quả trên đây, bạn sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.