Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp các đề thi thử vào lớp 10 môn Toán chất lượng cao. Đề số 39 là một trong những đề thi được thiết kế để giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.
Đề thi này bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, bao phủ đầy đủ các kiến thức trọng tâm của chương trình Toán lớp 9.
Đề thi vào lớp 10 môn Toán - Đề số 39 có đáp án và lời giải chi tiết
Đề bài
Câu I: (2,0 điểm)
1) Giải phương trình: \({x^2} + 8x + 7 = 0\)
2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right.\)
Câu II: (2,0 điểm)
Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right),\) với \(x > 0\)
1. Rút gọn biểu thức A.
2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)
Câu III: (2,0 điểm)
1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)
2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\)
Bài IV: (3,0 điểm)
Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.
1. Chứng minh AMEI là tứ giác nội tiếp.
2. Chứng minh \(IB.NE = 3IE.NB\)
3. Khi điểm E thay đổi, chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.
Câu V: (1,0 điểm)
Cho \(a,b,c\) là các số thực dương thỏa mãn: \(a + b + c = 1\) . Chứng minh \(\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} \ge 30.\)
Lời giải chi tiết
Câu I.
1) Giải phương trình: \({x^2} + 8x + 7 = 0\)
Ta có: \(a - b + c = 1 - 8 + 7 = 0\) nên phương trình đã cho luôn có một nghiệm là \(x = - 1\) và nghiệm còn lại là: \(x = - \dfrac{c}{a} = - 7\)
Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1; - 7} \right\}\).
2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right.\)
\(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x = 14\\y = 20 - 5x\end{array} \right.\)
\(\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 20 - 5.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 10\end{array} \right.\)
Vậy hệ phương trình đã cho có nghiệm là: \(\left( {x;y} \right) = \left( {2;10} \right)\)
Câu II.
Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right),\) với \(x > 0\)
1. Rút gọn biểu thức A.
\(\begin{array}{l}A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{x}{{\sqrt x \left( {\sqrt x + 2} \right)}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{{\sqrt x }}{{\sqrt x + 2}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}.\dfrac{{\sqrt x + 2}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\ = \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}}\end{array}\)
Vậy với \(x > 0\) thì \(\)
2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)
\(\begin{array}{l}A \ge \dfrac{1}{{3\sqrt x }} \Leftrightarrow \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge \dfrac{1}{{3\sqrt x }}\\ \Leftrightarrow \dfrac{{3 - \left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0\\ \Leftrightarrow \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0\end{array}\)
Với \(x > 0\) ta có: \(\sqrt x \left( {\sqrt x + 2} \right) > 0\) khi đó \(\dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0 \) \(\Leftrightarrow 1 - \sqrt x \ge 0 \Leftrightarrow x \le 1\)
Kết hợp với điều kiện ta được: \(0 < x \le 1\) thỏa mãn yêu cầu bài toán.
Câu III.
1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)
Đường thẳng (d) song song với đường thẳng (d’) khi và chỉ khi: \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 3\end{array} \right.\)
Khi đó (d) trở thành: \(y = 2x + b\left( {b \ne 3} \right)\)
Đường thẳng (d’) đi qua điểm \(A\left( {1; - 1} \right)\) nên ta có:
\( - 1 = 2.1 + b \Leftrightarrow b = - 3\left( {tm} \right)\)
Vậy đường thẳng (d) cần tìm là: \(y = 2x - 3\)
2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\)
Xét biệt thức \(\Delta = {\left( {m - 2} \right)^2} + 12 \ge 12 > 0,\forall m\)
Vậy phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Giả sử \({x_1} > {x_2}\)
Theo hệ thức Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 2\\{x_1}{x_2} = - 3\end{array} \right.\)
Theo đề ra ta có:
\(\begin{array}{l}\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\\ \Leftrightarrow \sqrt {x_1^2 + 2018} - \sqrt {x_2^2 + 2018} = {x_1} + {x_2}\\ \Leftrightarrow x_1^2 + 2018 + x_2^2 + 2018 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = x_1^2 + x_2^2 + 2{x_1}{x_2}\\\,\,\left( {Do\,\,{x_1} - {x_2} > 0} \right)\\ \Leftrightarrow 4036 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = 2{x_1}{x_2}\\ \Leftrightarrow \sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = 2018 - {x_1}{x_2}\\ \Leftrightarrow \left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right) = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow x_1^2x_2^2 + 2018\left( {x_1^2 + x_2^2} \right) + {2018^2} = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] = - 2{x_1}{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} = 0\\ \Leftrightarrow {\left( {m - 2} \right)^2} = 0\\ \Leftrightarrow m = 2\end{array}\)
Vậy m = 2 thỏa mãn yêu cầu bài toán.
Bài IV.
Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.
1. Chứng minh AMEI là tứ giác nội tiếp.
Ta có: MA là tiếp tuyến của (O) tại A nên \(\angle IAM = {90^0}\)
Xét tứ giác \(AMEI\) có \(\angle IAM + \angle IEM = {90^0} + {90^0} = {180^0}\)
\( \Rightarrow \) Tứ giác \(AMEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)
2. Chứng minh \(IB.NE = 3IE.NB\)
Ta có \(\angle IEA + \angle IEB = \angle AEB = {90^0}\) (góc nội tiếp chắn nửa đường tròn);
\(\angle NEB + \angle IEB = \angle NEI = {90^0}\,\,\left( {gt} \right)\);
\( \Rightarrow \angle IEA = \angle NEB\)
Xét \(\Delta IEA\) và \(\Delta NEB\) có:
\(\angle IEA = \angle NEB\,\,\left( {cmt} \right)\);
\(\angle IAE = \angle BAE = \angle NBE\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BE);
\( \Rightarrow \Delta IEA \sim \Delta NEB\,\,\left( {g.g} \right) \)
\(\Rightarrow \dfrac{{IE}}{{IA}} = \dfrac{{NE}}{{NB}}\)
\(\Rightarrow IA.NE = IE.NB\)
\(\Rightarrow 3IA.NE = 3IE.NB\)
Do I là trung điểm của OA \( \Rightarrow IA = \dfrac{1}{2}OA = \dfrac{1}{2}.\dfrac{1}{2}AB = \dfrac{1}{4}AB \)
\(\Rightarrow IA = \dfrac{1}{3}IB\) hay \(IB = 3IA\).
\( \Rightarrow IB.NE = 3IE.NB\,\,\left( {dpcm} \right)\).
3. Khi điểm E thay đổi chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.
+) Chứng minh tích \(AM.BN\) có giá trị không đổi
Xét tứ giác \(BNEI\) có \(\angle IBN + \angle IEN = {90^0} + {90^0} = {180^0}\) \( \Rightarrow \) Tứ giác \(BNEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)
\( \Rightarrow \angle NEB = \angle NIB\) (hai góc nội tiếp cùng chắn cung NB)
Ta có \(\angle AMI = \angle AEI\) (hai góc nội tiếp cùng chắn cung AI) ;
Mà \(\angle AEI = \angle NEB\,\,\left( {cmt} \right)\)
\( \Rightarrow \angle AMI = \angle NIB\).
Xét \(\Delta AMI\) và \(\Delta BIN\) có:
\(\begin{array}{l}\angle AMI = \angle NIB\,\,\left( {cmt} \right);\\\angle MAI = \angle IBN = {90^0}\,\,\left( {gt} \right);\\ \Rightarrow \Delta AMI \sim \Delta BIN\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AM}}{{BI}} = \dfrac{{AI}}{{BN}}\\ \Rightarrow AM.BN = AI.BI\end{array}\)
Ta có \(AI = \dfrac{1}{4}AB = \dfrac{1}{4}.2R = \dfrac{R}{2};\)
\(BI = \dfrac{3}{4}AB = \dfrac{3}{4}.2R = \dfrac{{3R}}{2}\)
\( \Rightarrow AM.BN = \dfrac{R}{2}.\dfrac{{3R}}{2} = \dfrac{{3{R^2}}}{4} = const\).
+) Tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.
Tứ giác BNEI là tứ giác nội tiếp (cmt) \( \Rightarrow \angle ENI = \angle EBI\) (hai góc nội tiếp cùng chắn cung EI)
Do tứ giác \(AMEI\) nội tiếp (cmt) \( \Rightarrow \angle IME = \angle IAE\) (hai góc nội tiếp cùng chắn cung IE)
\( \Rightarrow \angle ENI = \angle IME = \angle EBI + \angle IAE = {90^0}\) (\(\Delta ABE\) vuông tại E)
\( \Rightarrow \angle MIN = {90^0} \Rightarrow \Delta IMN\) vuông tại I \( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN\)
Đặt \(\angle AIM = \alpha \) \( \Rightarrow \angle BNI = \alpha \,\,\left( {{0^0} < \alpha < {{90}^0}} \right)\) \(\left( {Do\,\,\Delta AMI \sim \Delta BIN} \right)\).
Xét tam giác vuông AIM có \(\cos \angle AIM = \cos \alpha = \dfrac{{AI}}{{MI}}\)
\(\Rightarrow MI = \dfrac{{AI}}{{\cos \alpha }} = \dfrac{{\dfrac{R}{2}}}{{\cos \alpha }} = \dfrac{R}{{2\cos \alpha }}\)
Xét tam giác vuông BIN có : \(\sin \angle BNI = \sin \alpha = \dfrac{{BI}}{{IN}}\) \( \Rightarrow IN = \dfrac{{BI}}{{\sin \alpha }} = \dfrac{{\dfrac{{3R}}{2}}}{{\sin \alpha }} = \dfrac{{3R}}{{2\sin \alpha }}\)
\( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN = \dfrac{1}{2}.\dfrac{R}{{2\cos \alpha }}.\dfrac{{3R}}{{2\sin \alpha }} = \dfrac{{3{R^2}}}{{8\sin \alpha \cos \alpha }}\)
Do \({0^0} < \alpha < {90^0}\) \( \Rightarrow \sin \alpha > 0,\,\,\cos \alpha > 0\) và \(\cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \).
\(\begin{array}{l} \Rightarrow \sin \alpha .\cos \alpha = \sin \alpha .\sqrt {1 - {{\sin }^2}\alpha } \mathop \le \limits^{Cauchy} \dfrac{{{{\sin }^2}\alpha + 1 - {{\sin }^2}\alpha }}{2} = \dfrac{1}{2}\\ \Rightarrow {S_{IMN}} \ge \dfrac{{3{R^2}}}{{8.\dfrac{1}{2}}} = \dfrac{{3{R^2}}}{4}\end{array}\)
Dấu bằng xảy ra \( \Leftrightarrow \sin \alpha = \sqrt {1 - {{\sin }^2}\alpha }\)
\( \Leftrightarrow 2{\sin ^2}\alpha = 1 \)
\(\Leftrightarrow \sin \alpha = \dfrac{1}{{\sqrt 2 }} \Leftrightarrow \alpha = {45^0}\)
Vậy \({S_{IMN\,\,\min }} = \dfrac{{3{R^2}}}{4} \Leftrightarrow \angle AIM = {45^0}\)
Câu V.
Ta có:
\(\begin{array}{l}\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} = \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{9abc}} + \dfrac{8}{{9abc}}\\ \ge \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}} + \dfrac{8}{{9\dfrac{{{{\left( {a + b + c} \right)}^3}}}{{27}}}}\\ \ge 2\sqrt {\dfrac{1}{{{a^2} + {b^2} + {c^2}}}.\dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}}} + 24\\ \ge 2\sqrt {\dfrac{1}{{3\dfrac{{{{\left( {{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)}^2}}}{{27}}}}} + 24 = 30\end{array}\)
Đề thi vào lớp 10 môn Toán là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để đạt được kết quả tốt nhất, việc luyện tập thường xuyên với các đề thi thử là vô cùng cần thiết. Đề số 39 mà giaitoan.edu.vn cung cấp được xây dựng dựa trên cấu trúc đề thi chính thức của các trường THPT chuyên và các tỉnh thành trên cả nước.
Đề thi Đề số 39 bao gồm các phần chính sau:
Dưới đây là một số câu hỏi tiêu biểu trong đề thi Đề số 39:
Giải phương trình: 2x2 - 5x + 3 = 0
Hướng dẫn giải: Sử dụng công thức nghiệm của phương trình bậc hai. Tính delta (Δ) = b2 - 4ac = (-5)2 - 4 * 2 * 3 = 25 - 24 = 1. Vì Δ > 0, phương trình có hai nghiệm phân biệt: x1 = (-b + √Δ) / 2a = (5 + 1) / 4 = 1.5 và x2 = (-b - √Δ) / 2a = (5 - 1) / 4 = 1.
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Tính độ dài cạnh BC và diện tích tam giác ABC.
Hướng dẫn giải: Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25. Suy ra BC = √25 = 5cm. Diện tích tam giác ABC là: S = (1/2) * AB * AC = (1/2) * 3 * 4 = 6cm2.
Giải bất phương trình: 3x + 2 > 7
Hướng dẫn giải: Chuyển vế và rút gọn, ta có: 3x > 7 - 2 = 5. Suy ra x > 5/3.
Để đạt được kết quả tốt nhất trong kỳ thi vào lớp 10 môn Toán, các em học sinh cần lưu ý những điều sau:
giaitoan.edu.vn cung cấp:
Hãy bắt đầu luyện thi ngay hôm nay với Đề số 39 và các đề thi khác tại giaitoan.edu.vn để tự tin bước vào kỳ thi vào lớp 10 môn Toán!
Dạng bài | Ví dụ |
---|---|
Phương trình bậc hai | Giải phương trình: x2 - 5x + 6 = 0 |
Hệ phương trình | Giải hệ phương trình: {x + y = 5, x - y = 1} |
Hình học phẳng | Tính diện tích hình vuông có cạnh bằng 5cm |