Logo Header
  1. Môn Toán
  2. Đề số 39 - Đề thi vào lớp 10 môn Toán

Đề số 39 - Đề thi vào lớp 10 môn Toán

Đề số 39 - Đề thi vào lớp 10 môn Toán

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp các đề thi thử vào lớp 10 môn Toán chất lượng cao. Đề số 39 là một trong những đề thi được thiết kế để giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Đề thi này bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, bao phủ đầy đủ các kiến thức trọng tâm của chương trình Toán lớp 9.

Đề thi vào lớp 10 môn Toán - Đề số 39 có đáp án và lời giải chi tiết

Đề bài

Câu I: (2,0 điểm)

1) Giải phương trình: \({x^2} + 8x + 7 = 0\)

2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right.\)

Câu II: (2,0 điểm)

Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right),\) với \(x > 0\)

1. Rút gọn biểu thức A.

2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)

Câu III: (2,0 điểm)

1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)

2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:

\(\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\)

Bài IV: (3,0 điểm)

Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.

1. Chứng minh AMEI là tứ giác nội tiếp.

2. Chứng minh \(IB.NE = 3IE.NB\)

3. Khi điểm E thay đổi, chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

Câu V: (1,0 điểm)

Cho \(a,b,c\) là các số thực dương thỏa mãn: \(a + b + c = 1\) . Chứng minh \(\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} \ge 30.\)

Lời giải chi tiết

Câu I.

1) Giải phương trình: \({x^2} + 8x + 7 = 0\)

Ta có: \(a - b + c = 1 - 8 + 7 = 0\) nên phương trình đã cho luôn có một nghiệm là \(x = - 1\) và nghiệm còn lại là: \(x = - \dfrac{c}{a} = - 7\)

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1; - 7} \right\}\).

2) Giải hệ phương trình: \(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right.\)

\(\left\{ \begin{array}{l}2x - y = - 6\\5x + y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x = 14\\y = 20 - 5x\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 20 - 5.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 10\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm là: \(\left( {x;y} \right) = \left( {2;10} \right)\)

Câu II.

Cho biểu thức \(A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right),\) với \(x > 0\)

1. Rút gọn biểu thức A.

\(\begin{array}{l}A = \dfrac{{\sqrt x + 1}}{{x + 4\sqrt x + 4}}:\left( {\dfrac{x}{{x + 2\sqrt x }} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{x}{{\sqrt x \left( {\sqrt x + 2} \right)}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}:\left( {\dfrac{{\sqrt x }}{{\sqrt x + 2}} + \dfrac{x}{{\sqrt x + 2}}} \right)\\ = \dfrac{{\sqrt x + 1}}{{{{\left( {\sqrt x + 2} \right)}^2}}}.\dfrac{{\sqrt x + 2}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\ = \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}}\end{array}\)

Vậy với \(x > 0\) thì \(\)

2. Tìm tất cả các giá trị của x để \(A \ge \dfrac{1}{{3\sqrt x }}\)

\(\begin{array}{l}A \ge \dfrac{1}{{3\sqrt x }} \Leftrightarrow \dfrac{1}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge \dfrac{1}{{3\sqrt x }}\\ \Leftrightarrow \dfrac{{3 - \left( {\sqrt x + 2} \right)}}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0\\ \Leftrightarrow \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0\end{array}\)

Với \(x > 0\) ta có: \(\sqrt x \left( {\sqrt x + 2} \right) > 0\) khi đó \(\dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 2} \right)}} \ge 0 \) \(\Leftrightarrow 1 - \sqrt x \ge 0 \Leftrightarrow x \le 1\)

Kết hợp với điều kiện ta được: \(0 < x \le 1\) thỏa mãn yêu cầu bài toán.

Câu III.

1. Cho đường thẳng \(\left( d \right):\,\,y = ax + b\) . Tìm \(a,b\) để đường thẳng (d) song song với đường thẳng \(\left( {d'} \right):\,\,y = 2x + 3\) và đi qua điểm \(A\left( {1; - 1} \right)\)

Đường thẳng (d) song song với đường thẳng (d’) khi và chỉ khi: \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b \ne 3\end{array} \right.\)

Khi đó (d) trở thành: \(y = 2x + b\left( {b \ne 3} \right)\)

Đường thẳng (d’) đi qua điểm \(A\left( {1; - 1} \right)\) nên ta có:

\( - 1 = 2.1 + b \Leftrightarrow b = - 3\left( {tm} \right)\)

Vậy đường thẳng (d) cần tìm là: \(y = 2x - 3\)

2. Cho phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:

\(\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\)

Xét biệt thức \(\Delta = {\left( {m - 2} \right)^2} + 12 \ge 12 > 0,\forall m\)

Vậy phương trình \({x^2} - \left( {m - 2} \right)x - 3 = 0\) luôn có hai nghiệm phân biệt \({x_1};{x_2}\) với mọi m. Giả sử \({x_1} > {x_2}\)

Theo hệ thức Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m - 2\\{x_1}{x_2} = - 3\end{array} \right.\)

Theo đề ra ta có:

 \(\begin{array}{l}\sqrt {x_1^2 + 2018} - {x_1} = \sqrt {x_2^2 + 2018} + {x_2}\\ \Leftrightarrow \sqrt {x_1^2 + 2018} - \sqrt {x_2^2 + 2018} = {x_1} + {x_2}\\ \Leftrightarrow x_1^2 + 2018 + x_2^2 + 2018 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = x_1^2 + x_2^2 + 2{x_1}{x_2}\\\,\,\left( {Do\,\,{x_1} - {x_2} > 0} \right)\\ \Leftrightarrow 4036 - 2\sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = 2{x_1}{x_2}\\ \Leftrightarrow \sqrt {\left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right)} = 2018 - {x_1}{x_2}\\ \Leftrightarrow \left( {x_1^2 + 2018} \right).\left( {x_2^2 + 2018} \right) = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow x_1^2x_2^2 + 2018\left( {x_1^2 + x_2^2} \right) + {2018^2} = {2018^2} - 4036{x_1}{x_2} + x_1^2x_2^2\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] = - 2{x_1}{x_2}\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} = 0\\ \Leftrightarrow {\left( {m - 2} \right)^2} = 0\\ \Leftrightarrow m = 2\end{array}\)

Vậy m = 2 thỏa mãn yêu cầu bài toán.

Bài IV.

Cho đường tròn tâm \(\left( O \right)\), đường kính \(AB = 2R\). Gọi \({d_1};{d_2}\) lần lượt là các tiếp tuyến của đường tròn \(\left( O \right)\) tại A và B, I là trung điểm của đoạn thẳng OA, E là điểm thay đổi trên đường tròn \(\left( O \right)\) sao cho E không trùng với A và B. Đường thẳng d đi qua E và vuông góc với đường thẳng EI cắt \({d_1};{d_2}\) lần lượt tại M, N.

Đề số 39 - Đề thi vào lớp 10 môn Toán 1

1. Chứng minh AMEI là tứ giác nội tiếp.

Ta có: MA là tiếp tuyến của (O) tại A nên \(\angle IAM = {90^0}\)

Xét tứ giác \(AMEI\) có \(\angle IAM + \angle IEM = {90^0} + {90^0} = {180^0}\)

\( \Rightarrow \) Tứ giác \(AMEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

2. Chứng minh \(IB.NE = 3IE.NB\)

Ta có \(\angle IEA + \angle IEB = \angle AEB = {90^0}\) (góc nội tiếp chắn nửa đường tròn);

\(\angle NEB + \angle IEB = \angle NEI = {90^0}\,\,\left( {gt} \right)\);

\( \Rightarrow \angle IEA = \angle NEB\)

Xét \(\Delta IEA\) và \(\Delta NEB\) có:

\(\angle IEA = \angle NEB\,\,\left( {cmt} \right)\);

\(\angle IAE = \angle BAE = \angle NBE\) (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BE);

\( \Rightarrow \Delta IEA \sim \Delta NEB\,\,\left( {g.g} \right) \)

\(\Rightarrow \dfrac{{IE}}{{IA}} = \dfrac{{NE}}{{NB}}\)

\(\Rightarrow IA.NE = IE.NB\)

\(\Rightarrow 3IA.NE = 3IE.NB\)

Do I là trung điểm của OA \( \Rightarrow IA = \dfrac{1}{2}OA = \dfrac{1}{2}.\dfrac{1}{2}AB = \dfrac{1}{4}AB \)

\(\Rightarrow IA = \dfrac{1}{3}IB\) hay \(IB = 3IA\).

\( \Rightarrow IB.NE = 3IE.NB\,\,\left( {dpcm} \right)\).

3. Khi điểm E thay đổi chứng minh tích \(AM.BN\) có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

+) Chứng minh tích \(AM.BN\) có giá trị không đổi

Xét tứ giác \(BNEI\) có \(\angle IBN + \angle IEN = {90^0} + {90^0} = {180^0}\) \( \Rightarrow \) Tứ giác \(BNEI\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

\( \Rightarrow \angle NEB = \angle NIB\) (hai góc nội tiếp cùng chắn cung NB)

Ta có \(\angle AMI = \angle AEI\) (hai góc nội tiếp cùng chắn cung AI) ;

Mà \(\angle AEI = \angle NEB\,\,\left( {cmt} \right)\)

\( \Rightarrow \angle AMI = \angle NIB\).

Xét \(\Delta AMI\) và \(\Delta BIN\) có:

\(\begin{array}{l}\angle AMI = \angle NIB\,\,\left( {cmt} \right);\\\angle MAI = \angle IBN = {90^0}\,\,\left( {gt} \right);\\ \Rightarrow \Delta AMI \sim \Delta BIN\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AM}}{{BI}} = \dfrac{{AI}}{{BN}}\\ \Rightarrow AM.BN = AI.BI\end{array}\)

Ta có \(AI = \dfrac{1}{4}AB = \dfrac{1}{4}.2R = \dfrac{R}{2};\)

\(BI = \dfrac{3}{4}AB = \dfrac{3}{4}.2R = \dfrac{{3R}}{2}\) 

\( \Rightarrow AM.BN = \dfrac{R}{2}.\dfrac{{3R}}{2} = \dfrac{{3{R^2}}}{4} = const\).

+) Tìm giá trị nhỏ nhất của diện tích tam giác MNI theo R.

Tứ giác BNEI là tứ giác nội tiếp (cmt) \( \Rightarrow \angle ENI = \angle EBI\) (hai góc nội tiếp cùng chắn cung EI)

Do tứ giác \(AMEI\) nội tiếp (cmt) \( \Rightarrow \angle IME = \angle IAE\) (hai góc nội tiếp cùng chắn cung IE)

\( \Rightarrow \angle ENI = \angle IME = \angle EBI + \angle IAE = {90^0}\) (\(\Delta ABE\) vuông tại E)

\( \Rightarrow \angle MIN = {90^0} \Rightarrow \Delta IMN\) vuông tại I \( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN\)

Đặt \(\angle AIM = \alpha \) \( \Rightarrow \angle BNI = \alpha \,\,\left( {{0^0} < \alpha < {{90}^0}} \right)\) \(\left( {Do\,\,\Delta AMI \sim \Delta BIN} \right)\).

Xét tam giác vuông AIM có \(\cos \angle AIM = \cos \alpha = \dfrac{{AI}}{{MI}}\)

\(\Rightarrow MI = \dfrac{{AI}}{{\cos \alpha }} = \dfrac{{\dfrac{R}{2}}}{{\cos \alpha }} = \dfrac{R}{{2\cos \alpha }}\)

Xét tam giác vuông BIN có : \(\sin \angle BNI = \sin \alpha = \dfrac{{BI}}{{IN}}\) \( \Rightarrow IN = \dfrac{{BI}}{{\sin \alpha }} = \dfrac{{\dfrac{{3R}}{2}}}{{\sin \alpha }} = \dfrac{{3R}}{{2\sin \alpha }}\)

\( \Rightarrow {S_{IMN}} = \dfrac{1}{2}IM.IN = \dfrac{1}{2}.\dfrac{R}{{2\cos \alpha }}.\dfrac{{3R}}{{2\sin \alpha }} = \dfrac{{3{R^2}}}{{8\sin \alpha \cos \alpha }}\)

Do \({0^0} < \alpha < {90^0}\) \( \Rightarrow \sin \alpha > 0,\,\,\cos \alpha > 0\) và \(\cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \).

\(\begin{array}{l} \Rightarrow \sin \alpha .\cos \alpha = \sin \alpha .\sqrt {1 - {{\sin }^2}\alpha } \mathop \le \limits^{Cauchy} \dfrac{{{{\sin }^2}\alpha + 1 - {{\sin }^2}\alpha }}{2} = \dfrac{1}{2}\\ \Rightarrow {S_{IMN}} \ge \dfrac{{3{R^2}}}{{8.\dfrac{1}{2}}} = \dfrac{{3{R^2}}}{4}\end{array}\)

Dấu bằng xảy ra \( \Leftrightarrow \sin \alpha = \sqrt {1 - {{\sin }^2}\alpha }\)

\( \Leftrightarrow 2{\sin ^2}\alpha = 1 \)

\(\Leftrightarrow \sin \alpha = \dfrac{1}{{\sqrt 2 }} \Leftrightarrow \alpha = {45^0}\)

Vậy \({S_{IMN\,\,\min }} = \dfrac{{3{R^2}}}{4} \Leftrightarrow \angle AIM = {45^0}\)

Câu V.

Ta có:

\(\begin{array}{l}\dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{abc}} = \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{9abc}} + \dfrac{8}{{9abc}}\\ \ge \dfrac{1}{{{a^2} + {b^2} + {c^2}}} + \dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}} + \dfrac{8}{{9\dfrac{{{{\left( {a + b + c} \right)}^3}}}{{27}}}}\\ \ge 2\sqrt {\dfrac{1}{{{a^2} + {b^2} + {c^2}}}.\dfrac{1}{{3{{\left( {bc + ac + ab} \right)}^2}}}} + 24\\ \ge 2\sqrt {\dfrac{1}{{3\dfrac{{{{\left( {{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)}^2}}}{{27}}}}} + 24 = 30\end{array}\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề số 39 - Đề thi vào lớp 10 môn Toán đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Bài viết liên quan

Đề số 39 - Đề thi vào lớp 10 môn Toán: Phân tích chi tiết và hướng dẫn giải

Đề thi vào lớp 10 môn Toán là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để đạt được kết quả tốt nhất, việc luyện tập thường xuyên với các đề thi thử là vô cùng cần thiết. Đề số 39 mà giaitoan.edu.vn cung cấp được xây dựng dựa trên cấu trúc đề thi chính thức của các trường THPT chuyên và các tỉnh thành trên cả nước.

Cấu trúc đề thi Đề số 39

Đề thi Đề số 39 bao gồm các phần chính sau:

  • Phần I: Trắc nghiệm (5 câu, 2 điểm): Các câu hỏi trắc nghiệm tập trung vào các kiến thức cơ bản như đại số, hình học, số học và các khái niệm toán học thường gặp.
  • Phần II: Tự luận (5 câu, 8 điểm): Phần tự luận đòi hỏi học sinh phải vận dụng kiến thức đã học để giải quyết các bài toán phức tạp hơn, bao gồm các bài toán về phương trình, bất phương trình, hệ phương trình, hình học phẳng, hình học không gian và các bài toán thực tế.

Nội dung chi tiết đề thi

Dưới đây là một số câu hỏi tiêu biểu trong đề thi Đề số 39:

Câu 1: Đại số

Giải phương trình: 2x2 - 5x + 3 = 0

Hướng dẫn giải: Sử dụng công thức nghiệm của phương trình bậc hai. Tính delta (Δ) = b2 - 4ac = (-5)2 - 4 * 2 * 3 = 25 - 24 = 1. Vì Δ > 0, phương trình có hai nghiệm phân biệt: x1 = (-b + √Δ) / 2a = (5 + 1) / 4 = 1.5 và x2 = (-b - √Δ) / 2a = (5 - 1) / 4 = 1.

Câu 2: Hình học

Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Tính độ dài cạnh BC và diện tích tam giác ABC.

Hướng dẫn giải: Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25. Suy ra BC = √25 = 5cm. Diện tích tam giác ABC là: S = (1/2) * AB * AC = (1/2) * 3 * 4 = 6cm2.

Câu 3: Bất phương trình

Giải bất phương trình: 3x + 2 > 7

Hướng dẫn giải: Chuyển vế và rút gọn, ta có: 3x > 7 - 2 = 5. Suy ra x > 5/3.

Lời khuyên khi làm bài thi

Để đạt được kết quả tốt nhất trong kỳ thi vào lớp 10 môn Toán, các em học sinh cần lưu ý những điều sau:

  1. Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức và các phương pháp giải toán cơ bản.
  2. Luyện tập thường xuyên: Giải nhiều đề thi thử để làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
  3. Quản lý thời gian: Phân bổ thời gian hợp lý cho từng câu hỏi để đảm bảo hoàn thành bài thi trong thời gian quy định.
  4. Kiểm tra lại bài làm: Sau khi làm xong bài thi, hãy dành thời gian kiểm tra lại để phát hiện và sửa chữa các lỗi sai.

Tại sao nên luyện thi tại giaitoan.edu.vn?

giaitoan.edu.vn cung cấp:

  • Đa dạng đề thi: Hàng trăm đề thi thử vào lớp 10 môn Toán với nhiều mức độ khó khác nhau.
  • Đáp án chi tiết: Đáp án và lời giải chi tiết cho từng câu hỏi, giúp các em hiểu rõ cách giải và tự học hiệu quả.
  • Giao diện thân thiện: Giao diện website dễ sử dụng, giúp các em dễ dàng tìm kiếm và luyện tập.
  • Hỗ trợ trực tuyến: Đội ngũ giáo viên giàu kinh nghiệm sẵn sàng hỗ trợ các em giải đáp thắc mắc.

Hãy bắt đầu luyện thi ngay hôm nay với Đề số 39 và các đề thi khác tại giaitoan.edu.vn để tự tin bước vào kỳ thi vào lớp 10 môn Toán!

Bảng tổng hợp các dạng bài thường gặp

Dạng bàiVí dụ
Phương trình bậc haiGiải phương trình: x2 - 5x + 6 = 0
Hệ phương trìnhGiải hệ phương trình: {x + y = 5, x - y = 1}
Hình học phẳngTính diện tích hình vuông có cạnh bằng 5cm

Tài liệu, đề thi và đáp án Toán 9