Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Vĩnh Long năm 2020

Đề thi vào 10 môn Toán Vĩnh Long năm 2020

Đề thi vào 10 môn Toán Vĩnh Long năm 2020: Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Vĩnh Long năm 2020 chính thức. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này bao gồm đề thi chính thức và đáp án chi tiết, được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn. Chúng tôi hy vọng sẽ giúp các em đạt kết quả tốt nhất trong kỳ thi tuyển sinh vào lớp 10.

Bài 1: Tính giá trị biểu thức:

Đề bài

    Bài 1:

    Tính giá trị biểu thức:

    a) \(A = 2\sqrt {20} + 3\sqrt {45} - \sqrt {80} \) b) \(B = \sqrt {{{\left( {3 - \sqrt 7 } \right)}^2}} + \sqrt {11 + 4\sqrt 7 } \)

    Bài 2:

    Giải các phương trình và hệ phương trình sau:

    a) \(3{x^2} - 7x + 4 = 0\). b) \(3{x^2} - 12 = 0\)

    b) \(3{x^2} - 12 = 0\) d) \({x^4} - 4{x^2} + 4 = 0\)

    Bài 3:

    a) Trong mặt phẳng tọa độ \(Oxy,\) cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right).\) Vẽ đồ thị \(\left( P \right).\)

    b) Cho phương trình \({x^2} + \left( {2m - 5} \right)x + 4 - 2m = 0\) (\(x\) là ẩn số, \(m\) là tham số). Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 1.\)

    Bài 4:

    Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi.

    Bài 5:

    Cho tam giác \(ABC\) vuông tại \(A\) , đường cao AH. Biết \(BH = 4cm,{\rm{ }}CH = 9cm\)

    a) Tính độ dài đường cao AH và số đo \(\angle ABH\) (làm tròn đến độ)

    b) Vẽ đường trung tuyến AM của tam giác ABC \(\left( {M \in BC} \right)\) , tính diện tích tam giác \(AHM.\)

    Bài 6:

    Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng \(d\) vuông góc với OA tại M \(\left( {M \ne O,A} \right)\). Trên \(d\) lấy điểm N sao cho N nằm bên ngoài nửa đường tròn \(\left( O \right)\). Kẻ tiếp tuyến \(NE\) với nửa đường tròn \(\left( O \right)\) (E là tiếp điểm, E và A nằm cùng phía đối với đường thẳng \(d\))

    a) Chứng minh tứ giác OMEN nội tiếp được đường tròn.

    b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh \(N{E^2} = NC.NB\).

    c) Gọi H là giao điểm của AC và \(d\), F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh \(\angle NEF = \angle NOF\)

    Bài 7:

    Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2 - 23 = 0\,\,\,\left( 1 \right)\) và \(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2 - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

    Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải
    • Tải về

    Bài 1:

    Tính giá trị biểu thức:

    a) \(A = 2\sqrt {20} + 3\sqrt {45} - \sqrt {80} \) b) \(B = \sqrt {{{\left( {3 - \sqrt 7 } \right)}^2}} + \sqrt {11 + 4\sqrt 7 } \)

    Bài 2:

    Giải các phương trình và hệ phương trình sau:

    a) \(3{x^2} - 7x + 4 = 0\). b) \(3{x^2} - 12 = 0\)

    b) \(3{x^2} - 12 = 0\) d) \({x^4} - 4{x^2} + 4 = 0\)

    Bài 3:

    a) Trong mặt phẳng tọa độ \(Oxy,\) cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right).\) Vẽ đồ thị \(\left( P \right).\)

    b) Cho phương trình \({x^2} + \left( {2m - 5} \right)x + 4 - 2m = 0\) (\(x\) là ẩn số, \(m\) là tham số). Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 1.\)

    Bài 4:

    Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi.

    Bài 5:

    Cho tam giác \(ABC\) vuông tại \(A\) , đường cao AH. Biết \(BH = 4cm,{\rm{ }}CH = 9cm\)

    a) Tính độ dài đường cao AH và số đo \(\angle ABH\) (làm tròn đến độ)

    b) Vẽ đường trung tuyến AM của tam giác ABC \(\left( {M \in BC} \right)\) , tính diện tích tam giác \(AHM.\)

    Bài 6:

    Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng \(d\) vuông góc với OA tại M \(\left( {M \ne O,A} \right)\). Trên \(d\) lấy điểm N sao cho N nằm bên ngoài nửa đường tròn \(\left( O \right)\). Kẻ tiếp tuyến \(NE\) với nửa đường tròn \(\left( O \right)\) (E là tiếp điểm, E và A nằm cùng phía đối với đường thẳng \(d\))

    a) Chứng minh tứ giác OMEN nội tiếp được đường tròn.

    b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh \(N{E^2} = NC.NB\).

    c) Gọi H là giao điểm của AC và \(d\), F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh \(\angle NEF = \angle NOF\)

    Bài 7:

    Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2 - 23 = 0\,\,\,\left( 1 \right)\) và \(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2 - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

    Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

    Bài 1. (1,0 điểm)

    Cách giải:

    Tính giá trị biểu thức:

    a) \(A = 2\sqrt {20} + 3\sqrt {45} - \sqrt {80} \)

    \(\begin{array}{l} \Leftrightarrow A = 2\sqrt {{2^2}.5} + 3\sqrt {{3^2}.5} - \sqrt {{4^2}.5} \\ \Leftrightarrow A = 2.2\sqrt 5 + 3.3\sqrt 5 - 4\sqrt 5 \\ \Leftrightarrow A = 4\sqrt 5 + 9\sqrt 5 - 4\sqrt 5 \\ \Leftrightarrow A = 9\sqrt 5 \end{array}\)

    Vậy \(A = 9\sqrt 5 \).

    b) \(B = \sqrt {{{\left( {3 - \sqrt 7 } \right)}^2}} + \sqrt {11 + 4\sqrt 7 } \)

    \(\begin{array}{l} \Leftrightarrow B = \left| {3 - \sqrt 7 } \right| + \sqrt {{{\left( {\sqrt 7 } \right)}^2} + 2.\sqrt 7 .2 + {2^2}} \\ \Leftrightarrow B = 3 - \sqrt 7 + \sqrt {{{\left( {\sqrt 7 + 2} \right)}^2}} \,\,\left( {Do\,\,3 - \sqrt 7 > 0} \right)\\ \Leftrightarrow B = 3 - \sqrt 7 + \left| {\sqrt 7 + 2} \right|\\ \Leftrightarrow B = 3 - \sqrt 7 + \sqrt 7 + 2\,\,\,\left( {Do\,\,\sqrt 7 + 2 > 0} \right)\\ \Leftrightarrow B = 5\end{array}\)

    Vậy \(B = 5\).

    Bài 2. (2,0 điểm)

    Cách giải:

    Giải các phương trình và hệ phương trình sau:

    a) \(3{x^2} - 7x + 4 = 0\).

    Nhận xét:

    Ta có: \(a + b + c = 3 + \left( { - 7} \right) + 4 = 0\) nên phương trình đã cho có 2 nghiệm phân biệt \({x_1} = 1\), \({x_2} = \dfrac{c}{a} = \dfrac{4}{3}\).

    Vậy tập nghiệm của phương trình là \(S = \left\{ {1;\dfrac{4}{3}} \right\}\).

    b) \(3{x^2} - 12 = 0\)

    \(\begin{array}{l} \Leftrightarrow 3{x^2} = 12\\ \Leftrightarrow {x^2} = 4\\ \Leftrightarrow x = \pm 2\end{array}\)

    Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm 2} \right\}\).

    c) \(\left\{ \begin{array}{l}x + 3y = 8\\6x - 3y = 27\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l}7x = 35\\x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\5 + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 1\end{array} \right.\)

    Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {5;1} \right)\).

    d) \({x^4} - 4{x^2} + 4 = 0\)

    Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\), khi đó phương trình trở thành: \({t^2} - 4t + 4 = 0\)\( \Leftrightarrow {\left( {t - 2} \right)^2} = 0 \Leftrightarrow t = 2\,\,\,\left( {tm} \right)\)

    Với \(t = 2 \Rightarrow {x^2} = 2 \Leftrightarrow x = \pm \sqrt 2 \).

    Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm \sqrt 2 } \right\}\).

    Bài 3. (2 điểm)

    Cách giải:

    a) Trong mặt phẳng tọa độ \(Oxy,\) cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right).\) Vẽ đồ thị \(\left( P \right).\)

    Ta có bảng giá trị:

    \(x\)

    \( - 4\)

    \( - 2\)

    \(0\)

    \(2\)

    \(4\)

    \(y = \dfrac{1}{2}{x^2}\)

    \(8\)

    \(2\)

    \(0\)

    \(2\)

    \(8\)

    Vậy đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\) là đường cong nhận trục tung làm trục đối xứng và đi qua các điểm \(\left( { - 4;\,\,8} \right),\,\,\left( { - 2;\,\,2} \right),\,\,\left( {0;\,\,0} \right),\,\,\,\left( {2;\,\,2} \right),\,\,\,\left( {4;\,\,8} \right).\)

    Đồ thị hàm số:

    Đề thi vào 10 môn Toán Vĩnh Long năm 2020 1

    b) Cho phương trình \({x^2} + \left( {2m - 5} \right)x + 4 - 2m = 0\) (\(x\) là ẩn số, \(m\) là tham số). Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 1.\)

    Xét phương trình \({x^2} + \left( {2m - 5} \right)x + 4 - 2m = 0\,\,\,\,\left( * \right)\).

    Phương trình \(\left( * \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) \( \Leftrightarrow \Delta > 0\)

    \(\begin{array}{l} \Leftrightarrow {\left( {2m - 5} \right)^2} - 4.\left( {4 - 2m} \right) > 0\\ \Leftrightarrow 4{m^2} - 20m + 25 - 16 + 8m > 0\\ \Leftrightarrow 4{m^2} - 12m + 9 > 0\\ \Leftrightarrow {\left( {2m - 3} \right)^2} > 0\\ \Leftrightarrow 2m - 3 \ne 0 \Leftrightarrow m \ne \dfrac{3}{2}\end{array}\)

    Với \(m \ne \dfrac{3}{2}\) thì phương trình \(\left( * \right)\) có hai nghiệm phân biệt\({x_1},\,\,{x_2}.\)

    Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2m + 5\\{x_1}{x_2} = 4 - 2m\end{array} \right..\)

    Theo đề bài ta có: \(x_1^3 + x_2^3 = 1\)

    \(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 1\\ \Leftrightarrow {\left( { - 2m + 5} \right)^3} - 3\left( {4 - 2m} \right)\left( { - 2m + 5} \right) = 1\\ \Leftrightarrow - 8{m^3} + 60{m^2} - 150m + 125 - 60 - 12{m^2} + 54m = 1\\ \Leftrightarrow - 8{m^3} + 48{m^2} - 96m + 64 = 0\\ \Leftrightarrow {\left( { - 2m + 4} \right)^3} = 0\\ \Leftrightarrow - 2m + 4 = 0\\ \Leftrightarrow 2m = 4\\ \Leftrightarrow m = 2\,\,\left( {tm} \right)\end{array}\)

    Vậy \(m = 2\).

    Bài 4. (1,0 điểm)

    Cách giải:

    Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi.

    Gọi vận tốc dự định của người đó là \(x\,\,\left( {km/h} \right),\,\,\,\left( {x > 0} \right).\)

    \( \Rightarrow \) Thời gian dự định người đó đi đến Sóc Trăng là: \(\dfrac{{90}}{x}\,\,\left( h \right).\)

    Vận tốc thực tế người đó đi là: \(x + 10\,\,\left( {km/h} \right).\)

    \( \Rightarrow \) Thời gian thực tế người đó đi đến Sóc Trăng là:\(\dfrac{{90}}{{x + 10}}\,\,\left( h \right).\)

    Người đó đến Sóc Trăng sớm hơn dự định \(27\) phút \( = \dfrac{{27}}{{60}} = \dfrac{9}{{20}}\) giờ nên ta có phương trình:

    \(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\dfrac{{90}}{x} - \dfrac{{90}}{{x + 10}} = \dfrac{9}{{20}} \Leftrightarrow \dfrac{{10}}{x} - \dfrac{{10}}{{x + 10}} = \dfrac{1}{{20}}\\ \Leftrightarrow 10.20\left( {x + 10} \right) - 10.20x = x\left( {x + 10} \right)\\ \Leftrightarrow 2000 = {x^2} + 10x\\ \Leftrightarrow {x^2} + 10x - 2000 = 0\\ \Leftrightarrow {x^2} + 50x - 40x - 2000 = 0\\ \Leftrightarrow x\left( {x + 50} \right) - 40\left( {x + 50} \right) = 0\\ \Leftrightarrow \left( {x + 50} \right)\left( {x - 40} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 50 = 0\\x - 40 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 50\,\,\,\left( {ktm} \right)\\x = 40\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

    Vậy vận tốc dự định của người đó là 40 km/h.

    Bài 5. (1,0 điểm)

    Cách giải:

    Cho tam giác \(ABC\) vuông tại \(A\) , đường cao AH. Biết \(BH = 4cm,{\rm{ }}CH = 9cm\)

    Đề thi vào 10 môn Toán Vĩnh Long năm 2020 2

    a) Tính độ dài đường cao AH và số đo \(\angle ABH\) (làm tròn đến độ)

    Xét tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH,\) theo hệ thức lượng trong tam giác vuông ta có:

    \(A{H^2} = BH.CH = 4.9 = 36\) \( \Rightarrow AH = 6cm\).

    Xét tam giác \(ABH\) vuông tại \(H\) ta có: \(\tan \angle ABH = \dfrac{{AH}}{{BH}} = \dfrac{6}{4} = 1,5\) \( \Rightarrow \angle ABH \approx {56^0}\) .

    Vậy \(AH = 6\,\,cm\) và \(\angle ABH \approx {56^0}\).

    b) Vẽ đường trung tuyến AM của tam giác ABC \(\left( {M \in BC} \right)\) , tính diện tích tam giác \(AHM.\)

    Ta có: \(BC = BH + CH = 4 + 9 = 13\,\,\left( {cm} \right)\).

    Vì \(M\) là trung điểm cạnh \(BC\) nên \(BM = \dfrac{{BC}}{2} = \dfrac{{13}}{2} = 6,5\,\,\left( {cm} \right)\).

    Suy ra \(HM = BM - BH = 6,5 - 4 = 2,5\,\,\left( {cm} \right)\).

    Diện tích tam giác \(AHM\) vuông tại \(H\) là \({S_{AHM}} = \dfrac{1}{2}AH.HM = \dfrac{1}{2}.6.2,5 = 7,5\,\,\,\left( {c{m^2}} \right)\).

    Bài 6. (2,5 điểm)

    Cách giải:

    Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng \(d\) vuông góc với OA tại M \(\left( {M \ne O,A} \right)\). Trên \(d\) lấy điểm N sao cho N nằm bên ngoài nửa đường tròn \(\left( O \right)\). Kẻ tiếp tuyến \(NE\) với nửa đường tròn \(\left( O \right)\) (E là tiếp điểm, E và A nằm cùng phía đối với đường thẳng \(d\))

    Đề thi vào 10 môn Toán Vĩnh Long năm 2020 3

    a) Chứng minh tứ giác OMEN nội tiếp được đường tròn.

    Ta có: \(d \bot OA \Rightarrow \angle NMO = {90^0}\)

    \(NE\) là tiếp tuyến với \(\left( O \right)\) tại \(E\) nên \(OE \bot NE \Rightarrow \angle NEO = {90^0}\)

    Tứ giác \(OMEN\) có \(\angle NMO = \angle NEO = {90^0}\)

    Nên \(OMEN\) là tứ giác nội tiếp (hai đỉnh kề một cạnh cùng nhìn cạnh đối diện dưới các góc bằng) (đpcm)

    b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh \(N{E^2} = NC.NB\).

    Nối \(E\) với \(C,\,\,E\) với \(B.\)

    Xét \(\Delta NEC\) và \(\Delta NBE\) có:

    \(\angle N\,\,\,chung\)

    \(\angle NBE = \angle NEC\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(EC\))

    \( \Rightarrow \Delta NEC \sim \Delta NBE\left( {g - g} \right)\)

    \( \Rightarrow \dfrac{{NE}}{{NB}} = \dfrac{{NC}}{{NE}}\) (các cặp cạnh tương ứng tỉ lệ)

    \( \Rightarrow N{E^2} = NB.NC\) (đpcm)

    c) Gọi H là giao điểm của AC và \(d\), F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh \(\angle NEF = \angle NOF\)

    Xét \(\Delta NCH\) và \(\Delta NMB\) có:

     \(\begin{array}{l}\angle N\,\,\,chung\\\angle NCH = \angle NMB = {90^0}\\ \Rightarrow \Delta NCH \sim \Delta NMB\,\,\,\left( {g - g} \right)\end{array}\)

    \( \Rightarrow \dfrac{{NC}}{{NM}} = \dfrac{{NH}}{{NB}}\) (các cặp cạnh tương ứng tỉ lệ)

    \( \Rightarrow NC.NB = NH.NM\)

    Mà \(N{E^2} = NB.NC\,\,\,\,\left( {cmt} \right)\) nên \(N{E^2} = NH.NM\) \( \Rightarrow \dfrac{{NE}}{{NM}} = \dfrac{{NH}}{{NE}}\)

    Xét \(\Delta NEH\) và \(\Delta NME\) có:

    \(\begin{array}{l}\angle N\,\,\,chung\\\dfrac{{NE}}{{NM}} = \dfrac{{NH}}{{NE}}\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta NEH \sim \Delta NME\,\,\,\,\left( {c - g - c} \right)\end{array}\)

    \( \Rightarrow \angle NHE = \angle NEM\) (các góc tương ứng) (1)

    Kẻ tiếp tuyến \(NF'\) với nửa đường tròn \(\left( O \right).\)

    Do \(NE = NF'\) (tính chất hai tiếp tuyến cắt nhau)

    \( \Rightarrow NF{'^2} = NH.NM\) \( \Rightarrow \dfrac{{NF'}}{{NH}} = \dfrac{{NM}}{{NF'}}\)

    Xét \(\Delta NF'H\) và \(\Delta NMF'\) có:

    \(\begin{array}{l}\angle N\,\,\,chung\\\dfrac{{NF'}}{{NH}} = \dfrac{{NM}}{{NF'}}\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta NF'H \sim \Delta NMF'\,\,\,\left( {c - g - c} \right)\end{array}\)

    \( \Rightarrow \angle NHF' = \angle NF'M\) (các góc tương ứng) (2)

    Lại có tứ giác \(OMEN\) nội tiếp (câu a) nên bốn điểm \(O,\,\,M,\,\,E,\,\,N\) cùng thuộc một đường tròn. (3)

    Tứ giác \(OENF'\) có \(\angle OEN + \angle OF'N = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\))

    Do đó bốn điểm \(O,\,\,E,\,\,N,\,\,F'\) cùng thuộc một đường tròn. (4)

    Từ (3) và (4) suy ra 5 điểm \(O,\,\,M,\,\,E,\,\,N,\,\,F'\) cùng thuộc một đường tròn.

    \( \Rightarrow \) Tứ giác \(MENF'\) nội tiếp.

    \( \Rightarrow \angle NEM + \angle NF'M = {180^0}\) (tính chất) (5)

    Từ (1), (2) và (5) suy ra \( \Rightarrow \angle NHE + \angle NHF' = \angle NEM + \angle NF'M = {180^0}\)

    \( \Rightarrow E,H,F'\) thằng hàng hay \(F'\) là giao điểm của \(EH\) với nửa đường tròn \(\left( O \right)\)

    \( \Rightarrow F' \equiv F\)

    \( \Rightarrow \) Tứ giác \(NEOF\) nội tiếp

    \( \Rightarrow \angle NEF = \angle NOF\) (hai góc nội tiếp cùng chắn cung \(NF\)) (đpcm).

    Bài 7. (0,5 điểm)

    Cách giải:

    Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2 - 23 = 0\,\,\,\left( 1 \right)\)\(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2 - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

    Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

    Phương trình (1) có hai nghiệm \({\Delta _1} \ge 0\)

    \(\begin{array}{l} \Leftrightarrow {\left( {2{m^2} + 1} \right)^2} - 4\left( {{m^3} + 7\sqrt 2 - 23} \right) \ge 0\\ \Leftrightarrow 4{m^4} + 4{m^2} + 1 - 4{m^3} - 28\sqrt 2 + 92 \ge 0\\ \Leftrightarrow 4{m^4} - 4{m^3} + 4{m^2} - 28\sqrt 2 + 93 \ge 0\,\,\,\,\,\left( * \right)\end{array}\)

    Phương trình (2) có hai nghiệm \({\Delta _2} \ge 0\)

    \(\begin{array}{l} \Leftrightarrow {\left( {{m^2} - m} \right)^2} - 8\left( {9\sqrt 2 - 30} \right) \ge 0\\ \Leftrightarrow {m^4} - 2{m^3} + {m^2} - 72\sqrt 2 + 240 \ge 0\,\,\,\left( {**} \right)\end{array}\)

    Hai phương trình đã cho có nghiệm chung là \(x = 3\)

    \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}9 + \left( {2{m^2} + 1} \right).3 + {m^3} + 7\sqrt 2 - 23 = 0\\2.9 + \left( {{m^2} - m} \right).3 + 9\sqrt 2 - 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2 - 11 = 0\\3{m^2} - 3m + 9\sqrt 2 - 12 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2 - 11 = 0\,\,\,\,\left( 3 \right)\\{m^2} - m + 3\sqrt 2 - 4 = 0\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\end{array}\)

    Giải phương trình (4) ta được:

    \(\begin{array}{l}\left( 4 \right) \Leftrightarrow {m^2} - m = 4 - 3\sqrt 2 \\ \Leftrightarrow {m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4} = \dfrac{{17}}{4} - 3\sqrt 2 \\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{17 - 12\sqrt 2 }}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{9 - 2.3.2\sqrt 2 + 8}}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{{{\left( {3 - 2\sqrt 2 } \right)}^2}}}{4}\\ \Leftrightarrow \left[ \begin{array}{l}m - \dfrac{1}{2} = \dfrac{{3 - 2\sqrt 2 }}{2}\\m - \dfrac{1}{2} = - \dfrac{{3 - 2\sqrt 2 }}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 2 - \sqrt 2 \,\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\\m = \sqrt 2 - 1\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\end{array} \right.\end{array}\)

    +) Với \(m = 2 - \sqrt 2 \) ta có:

    \(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {2 - \sqrt 2 } \right)^3} + 6{\left( {2 - \sqrt 2 } \right)^2} + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow 20 - 14\sqrt 2 + 6\left( {6 - 4\sqrt 2 } \right) + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow 9 - 7\sqrt 2 + 36 - 24\sqrt 2 = 0\\ \Leftrightarrow 45 - 31\sqrt 2 = 0\,\,\,\left( {ktm} \right)\end{array}\)

    \( \Rightarrow m = 2 - \sqrt 2 \) không thỏa mãn bài toán.

    +) Với \(m = \sqrt 2 - 1\) ta có:

    \(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {\sqrt 2 - 1} \right)^3} + 6{\left( {\sqrt 2 - 1} \right)^2} + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow - 7 + 5\sqrt 2 + 6\left( {3 - 2\sqrt 2 } \right) + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow - 18 + 12\sqrt 2 + 18 - 12\sqrt 2 = 0\\ \Leftrightarrow 0 = 0\,\,\,\left( {tm} \right)\end{array}\)

    \( \Rightarrow m = \sqrt 2 - 1\) thỏa mãn bài toán.

    Vậy \(m = \sqrt 2 - 1\) thỏa mãn bài toán.

    Lời giải

      Bài 1. (1,0 điểm)

      Cách giải:

      Tính giá trị biểu thức:

      a) \(A = 2\sqrt {20} + 3\sqrt {45} - \sqrt {80} \)

      \(\begin{array}{l} \Leftrightarrow A = 2\sqrt {{2^2}.5} + 3\sqrt {{3^2}.5} - \sqrt {{4^2}.5} \\ \Leftrightarrow A = 2.2\sqrt 5 + 3.3\sqrt 5 - 4\sqrt 5 \\ \Leftrightarrow A = 4\sqrt 5 + 9\sqrt 5 - 4\sqrt 5 \\ \Leftrightarrow A = 9\sqrt 5 \end{array}\)

      Vậy \(A = 9\sqrt 5 \).

      b) \(B = \sqrt {{{\left( {3 - \sqrt 7 } \right)}^2}} + \sqrt {11 + 4\sqrt 7 } \)

      \(\begin{array}{l} \Leftrightarrow B = \left| {3 - \sqrt 7 } \right| + \sqrt {{{\left( {\sqrt 7 } \right)}^2} + 2.\sqrt 7 .2 + {2^2}} \\ \Leftrightarrow B = 3 - \sqrt 7 + \sqrt {{{\left( {\sqrt 7 + 2} \right)}^2}} \,\,\left( {Do\,\,3 - \sqrt 7 > 0} \right)\\ \Leftrightarrow B = 3 - \sqrt 7 + \left| {\sqrt 7 + 2} \right|\\ \Leftrightarrow B = 3 - \sqrt 7 + \sqrt 7 + 2\,\,\,\left( {Do\,\,\sqrt 7 + 2 > 0} \right)\\ \Leftrightarrow B = 5\end{array}\)

      Vậy \(B = 5\).

      Bài 2. (2,0 điểm)

      Cách giải:

      Giải các phương trình và hệ phương trình sau:

      a) \(3{x^2} - 7x + 4 = 0\).

      Nhận xét:

      Ta có: \(a + b + c = 3 + \left( { - 7} \right) + 4 = 0\) nên phương trình đã cho có 2 nghiệm phân biệt \({x_1} = 1\), \({x_2} = \dfrac{c}{a} = \dfrac{4}{3}\).

      Vậy tập nghiệm của phương trình là \(S = \left\{ {1;\dfrac{4}{3}} \right\}\).

      b) \(3{x^2} - 12 = 0\)

      \(\begin{array}{l} \Leftrightarrow 3{x^2} = 12\\ \Leftrightarrow {x^2} = 4\\ \Leftrightarrow x = \pm 2\end{array}\)

      Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm 2} \right\}\).

      c) \(\left\{ \begin{array}{l}x + 3y = 8\\6x - 3y = 27\end{array} \right.\)

      \( \Leftrightarrow \left\{ \begin{array}{l}7x = 35\\x + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\5 + 3y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 1\end{array} \right.\)

      Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {5;1} \right)\).

      d) \({x^4} - 4{x^2} + 4 = 0\)

      Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\), khi đó phương trình trở thành: \({t^2} - 4t + 4 = 0\)\( \Leftrightarrow {\left( {t - 2} \right)^2} = 0 \Leftrightarrow t = 2\,\,\,\left( {tm} \right)\)

      Với \(t = 2 \Rightarrow {x^2} = 2 \Leftrightarrow x = \pm \sqrt 2 \).

      Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm \sqrt 2 } \right\}\).

      Bài 3. (2 điểm)

      Cách giải:

      a) Trong mặt phẳng tọa độ \(Oxy,\) cho hàm số \(y = \dfrac{1}{2}{x^2}\) có đồ thị \(\left( P \right).\) Vẽ đồ thị \(\left( P \right).\)

      Ta có bảng giá trị:

      \(x\)

      \( - 4\)

      \( - 2\)

      \(0\)

      \(2\)

      \(4\)

      \(y = \dfrac{1}{2}{x^2}\)

      \(8\)

      \(2\)

      \(0\)

      \(2\)

      \(8\)

      Vậy đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\) là đường cong nhận trục tung làm trục đối xứng và đi qua các điểm \(\left( { - 4;\,\,8} \right),\,\,\left( { - 2;\,\,2} \right),\,\,\left( {0;\,\,0} \right),\,\,\,\left( {2;\,\,2} \right),\,\,\,\left( {4;\,\,8} \right).\)

      Đồ thị hàm số:

      Đề thi vào 10 môn Toán Vĩnh Long năm 2020 1 1

      b) Cho phương trình \({x^2} + \left( {2m - 5} \right)x + 4 - 2m = 0\) (\(x\) là ẩn số, \(m\) là tham số). Tìm \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^3 + x_2^3 = 1.\)

      Xét phương trình \({x^2} + \left( {2m - 5} \right)x + 4 - 2m = 0\,\,\,\,\left( * \right)\).

      Phương trình \(\left( * \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) \( \Leftrightarrow \Delta > 0\)

      \(\begin{array}{l} \Leftrightarrow {\left( {2m - 5} \right)^2} - 4.\left( {4 - 2m} \right) > 0\\ \Leftrightarrow 4{m^2} - 20m + 25 - 16 + 8m > 0\\ \Leftrightarrow 4{m^2} - 12m + 9 > 0\\ \Leftrightarrow {\left( {2m - 3} \right)^2} > 0\\ \Leftrightarrow 2m - 3 \ne 0 \Leftrightarrow m \ne \dfrac{3}{2}\end{array}\)

      Với \(m \ne \dfrac{3}{2}\) thì phương trình \(\left( * \right)\) có hai nghiệm phân biệt\({x_1},\,\,{x_2}.\)

      Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2m + 5\\{x_1}{x_2} = 4 - 2m\end{array} \right..\)

      Theo đề bài ta có: \(x_1^3 + x_2^3 = 1\)

      \(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = 1\\ \Leftrightarrow {\left( { - 2m + 5} \right)^3} - 3\left( {4 - 2m} \right)\left( { - 2m + 5} \right) = 1\\ \Leftrightarrow - 8{m^3} + 60{m^2} - 150m + 125 - 60 - 12{m^2} + 54m = 1\\ \Leftrightarrow - 8{m^3} + 48{m^2} - 96m + 64 = 0\\ \Leftrightarrow {\left( { - 2m + 4} \right)^3} = 0\\ \Leftrightarrow - 2m + 4 = 0\\ \Leftrightarrow 2m = 4\\ \Leftrightarrow m = 2\,\,\left( {tm} \right)\end{array}\)

      Vậy \(m = 2\).

      Bài 4. (1,0 điểm)

      Cách giải:

      Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi.

      Gọi vận tốc dự định của người đó là \(x\,\,\left( {km/h} \right),\,\,\,\left( {x > 0} \right).\)

      \( \Rightarrow \) Thời gian dự định người đó đi đến Sóc Trăng là: \(\dfrac{{90}}{x}\,\,\left( h \right).\)

      Vận tốc thực tế người đó đi là: \(x + 10\,\,\left( {km/h} \right).\)

      \( \Rightarrow \) Thời gian thực tế người đó đi đến Sóc Trăng là:\(\dfrac{{90}}{{x + 10}}\,\,\left( h \right).\)

      Người đó đến Sóc Trăng sớm hơn dự định \(27\) phút \( = \dfrac{{27}}{{60}} = \dfrac{9}{{20}}\) giờ nên ta có phương trình:

      \(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\dfrac{{90}}{x} - \dfrac{{90}}{{x + 10}} = \dfrac{9}{{20}} \Leftrightarrow \dfrac{{10}}{x} - \dfrac{{10}}{{x + 10}} = \dfrac{1}{{20}}\\ \Leftrightarrow 10.20\left( {x + 10} \right) - 10.20x = x\left( {x + 10} \right)\\ \Leftrightarrow 2000 = {x^2} + 10x\\ \Leftrightarrow {x^2} + 10x - 2000 = 0\\ \Leftrightarrow {x^2} + 50x - 40x - 2000 = 0\\ \Leftrightarrow x\left( {x + 50} \right) - 40\left( {x + 50} \right) = 0\\ \Leftrightarrow \left( {x + 50} \right)\left( {x - 40} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 50 = 0\\x - 40 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 50\,\,\,\left( {ktm} \right)\\x = 40\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

      Vậy vận tốc dự định của người đó là 40 km/h.

      Bài 5. (1,0 điểm)

      Cách giải:

      Cho tam giác \(ABC\) vuông tại \(A\) , đường cao AH. Biết \(BH = 4cm,{\rm{ }}CH = 9cm\)

      Đề thi vào 10 môn Toán Vĩnh Long năm 2020 1 2

      a) Tính độ dài đường cao AH và số đo \(\angle ABH\) (làm tròn đến độ)

      Xét tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH,\) theo hệ thức lượng trong tam giác vuông ta có:

      \(A{H^2} = BH.CH = 4.9 = 36\) \( \Rightarrow AH = 6cm\).

      Xét tam giác \(ABH\) vuông tại \(H\) ta có: \(\tan \angle ABH = \dfrac{{AH}}{{BH}} = \dfrac{6}{4} = 1,5\) \( \Rightarrow \angle ABH \approx {56^0}\) .

      Vậy \(AH = 6\,\,cm\) và \(\angle ABH \approx {56^0}\).

      b) Vẽ đường trung tuyến AM của tam giác ABC \(\left( {M \in BC} \right)\) , tính diện tích tam giác \(AHM.\)

      Ta có: \(BC = BH + CH = 4 + 9 = 13\,\,\left( {cm} \right)\).

      Vì \(M\) là trung điểm cạnh \(BC\) nên \(BM = \dfrac{{BC}}{2} = \dfrac{{13}}{2} = 6,5\,\,\left( {cm} \right)\).

      Suy ra \(HM = BM - BH = 6,5 - 4 = 2,5\,\,\left( {cm} \right)\).

      Diện tích tam giác \(AHM\) vuông tại \(H\) là \({S_{AHM}} = \dfrac{1}{2}AH.HM = \dfrac{1}{2}.6.2,5 = 7,5\,\,\,\left( {c{m^2}} \right)\).

      Bài 6. (2,5 điểm)

      Cách giải:

      Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng \(d\) vuông góc với OA tại M \(\left( {M \ne O,A} \right)\). Trên \(d\) lấy điểm N sao cho N nằm bên ngoài nửa đường tròn \(\left( O \right)\). Kẻ tiếp tuyến \(NE\) với nửa đường tròn \(\left( O \right)\) (E là tiếp điểm, E và A nằm cùng phía đối với đường thẳng \(d\))

      Đề thi vào 10 môn Toán Vĩnh Long năm 2020 1 3

      a) Chứng minh tứ giác OMEN nội tiếp được đường tròn.

      Ta có: \(d \bot OA \Rightarrow \angle NMO = {90^0}\)

      \(NE\) là tiếp tuyến với \(\left( O \right)\) tại \(E\) nên \(OE \bot NE \Rightarrow \angle NEO = {90^0}\)

      Tứ giác \(OMEN\) có \(\angle NMO = \angle NEO = {90^0}\)

      Nên \(OMEN\) là tứ giác nội tiếp (hai đỉnh kề một cạnh cùng nhìn cạnh đối diện dưới các góc bằng) (đpcm)

      b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh \(N{E^2} = NC.NB\).

      Nối \(E\) với \(C,\,\,E\) với \(B.\)

      Xét \(\Delta NEC\) và \(\Delta NBE\) có:

      \(\angle N\,\,\,chung\)

      \(\angle NBE = \angle NEC\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(EC\))

      \( \Rightarrow \Delta NEC \sim \Delta NBE\left( {g - g} \right)\)

      \( \Rightarrow \dfrac{{NE}}{{NB}} = \dfrac{{NC}}{{NE}}\) (các cặp cạnh tương ứng tỉ lệ)

      \( \Rightarrow N{E^2} = NB.NC\) (đpcm)

      c) Gọi H là giao điểm của AC và \(d\), F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh \(\angle NEF = \angle NOF\)

      Xét \(\Delta NCH\) và \(\Delta NMB\) có:

       \(\begin{array}{l}\angle N\,\,\,chung\\\angle NCH = \angle NMB = {90^0}\\ \Rightarrow \Delta NCH \sim \Delta NMB\,\,\,\left( {g - g} \right)\end{array}\)

      \( \Rightarrow \dfrac{{NC}}{{NM}} = \dfrac{{NH}}{{NB}}\) (các cặp cạnh tương ứng tỉ lệ)

      \( \Rightarrow NC.NB = NH.NM\)

      Mà \(N{E^2} = NB.NC\,\,\,\,\left( {cmt} \right)\) nên \(N{E^2} = NH.NM\) \( \Rightarrow \dfrac{{NE}}{{NM}} = \dfrac{{NH}}{{NE}}\)

      Xét \(\Delta NEH\) và \(\Delta NME\) có:

      \(\begin{array}{l}\angle N\,\,\,chung\\\dfrac{{NE}}{{NM}} = \dfrac{{NH}}{{NE}}\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta NEH \sim \Delta NME\,\,\,\,\left( {c - g - c} \right)\end{array}\)

      \( \Rightarrow \angle NHE = \angle NEM\) (các góc tương ứng) (1)

      Kẻ tiếp tuyến \(NF'\) với nửa đường tròn \(\left( O \right).\)

      Do \(NE = NF'\) (tính chất hai tiếp tuyến cắt nhau)

      \( \Rightarrow NF{'^2} = NH.NM\) \( \Rightarrow \dfrac{{NF'}}{{NH}} = \dfrac{{NM}}{{NF'}}\)

      Xét \(\Delta NF'H\) và \(\Delta NMF'\) có:

      \(\begin{array}{l}\angle N\,\,\,chung\\\dfrac{{NF'}}{{NH}} = \dfrac{{NM}}{{NF'}}\,\,\,\left( {cmt} \right)\\ \Rightarrow \Delta NF'H \sim \Delta NMF'\,\,\,\left( {c - g - c} \right)\end{array}\)

      \( \Rightarrow \angle NHF' = \angle NF'M\) (các góc tương ứng) (2)

      Lại có tứ giác \(OMEN\) nội tiếp (câu a) nên bốn điểm \(O,\,\,M,\,\,E,\,\,N\) cùng thuộc một đường tròn. (3)

      Tứ giác \(OENF'\) có \(\angle OEN + \angle OF'N = {90^0} + {90^0} = {180^0}\) nên là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng \({180^0}\))

      Do đó bốn điểm \(O,\,\,E,\,\,N,\,\,F'\) cùng thuộc một đường tròn. (4)

      Từ (3) và (4) suy ra 5 điểm \(O,\,\,M,\,\,E,\,\,N,\,\,F'\) cùng thuộc một đường tròn.

      \( \Rightarrow \) Tứ giác \(MENF'\) nội tiếp.

      \( \Rightarrow \angle NEM + \angle NF'M = {180^0}\) (tính chất) (5)

      Từ (1), (2) và (5) suy ra \( \Rightarrow \angle NHE + \angle NHF' = \angle NEM + \angle NF'M = {180^0}\)

      \( \Rightarrow E,H,F'\) thằng hàng hay \(F'\) là giao điểm của \(EH\) với nửa đường tròn \(\left( O \right)\)

      \( \Rightarrow F' \equiv F\)

      \( \Rightarrow \) Tứ giác \(NEOF\) nội tiếp

      \( \Rightarrow \angle NEF = \angle NOF\) (hai góc nội tiếp cùng chắn cung \(NF\)) (đpcm).

      Bài 7. (0,5 điểm)

      Cách giải:

      Cho hai phương trình \({x^2} + \left( {2{m^2} + 1} \right)x + {m^3} + 7\sqrt 2 - 23 = 0\,\,\,\left( 1 \right)\)\(2{x^2} + \left( {{m^2} - m} \right)x + 9\sqrt 2 - 30 = 0\,\,\,\left( 2 \right)\) (\(x\) là ẩn số, \(m\) là tham số).

      Tìm giá trị của tham số \(m\) để phương trình (1) và phương trình (2) có nghiệm chung \(x = 3\).

      Phương trình (1) có hai nghiệm \({\Delta _1} \ge 0\)

      \(\begin{array}{l} \Leftrightarrow {\left( {2{m^2} + 1} \right)^2} - 4\left( {{m^3} + 7\sqrt 2 - 23} \right) \ge 0\\ \Leftrightarrow 4{m^4} + 4{m^2} + 1 - 4{m^3} - 28\sqrt 2 + 92 \ge 0\\ \Leftrightarrow 4{m^4} - 4{m^3} + 4{m^2} - 28\sqrt 2 + 93 \ge 0\,\,\,\,\,\left( * \right)\end{array}\)

      Phương trình (2) có hai nghiệm \({\Delta _2} \ge 0\)

      \(\begin{array}{l} \Leftrightarrow {\left( {{m^2} - m} \right)^2} - 8\left( {9\sqrt 2 - 30} \right) \ge 0\\ \Leftrightarrow {m^4} - 2{m^3} + {m^2} - 72\sqrt 2 + 240 \ge 0\,\,\,\left( {**} \right)\end{array}\)

      Hai phương trình đã cho có nghiệm chung là \(x = 3\)

      \(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}9 + \left( {2{m^2} + 1} \right).3 + {m^3} + 7\sqrt 2 - 23 = 0\\2.9 + \left( {{m^2} - m} \right).3 + 9\sqrt 2 - 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2 - 11 = 0\\3{m^2} - 3m + 9\sqrt 2 - 12 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^3} + 6{m^2} + 7\sqrt 2 - 11 = 0\,\,\,\,\left( 3 \right)\\{m^2} - m + 3\sqrt 2 - 4 = 0\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\end{array}\)

      Giải phương trình (4) ta được:

      \(\begin{array}{l}\left( 4 \right) \Leftrightarrow {m^2} - m = 4 - 3\sqrt 2 \\ \Leftrightarrow {m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4} = \dfrac{{17}}{4} - 3\sqrt 2 \\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{17 - 12\sqrt 2 }}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{9 - 2.3.2\sqrt 2 + 8}}{4}\\ \Leftrightarrow {\left( {m - \dfrac{1}{2}} \right)^2} = \dfrac{{{{\left( {3 - 2\sqrt 2 } \right)}^2}}}{4}\\ \Leftrightarrow \left[ \begin{array}{l}m - \dfrac{1}{2} = \dfrac{{3 - 2\sqrt 2 }}{2}\\m - \dfrac{1}{2} = - \dfrac{{3 - 2\sqrt 2 }}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 2 - \sqrt 2 \,\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\\m = \sqrt 2 - 1\,\,\,\left( {tm\,\,\,\left( * \right),\,\,\left( {**} \right)} \right)\end{array} \right.\end{array}\)

      +) Với \(m = 2 - \sqrt 2 \) ta có:

      \(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {2 - \sqrt 2 } \right)^3} + 6{\left( {2 - \sqrt 2 } \right)^2} + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow 20 - 14\sqrt 2 + 6\left( {6 - 4\sqrt 2 } \right) + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow 9 - 7\sqrt 2 + 36 - 24\sqrt 2 = 0\\ \Leftrightarrow 45 - 31\sqrt 2 = 0\,\,\,\left( {ktm} \right)\end{array}\)

      \( \Rightarrow m = 2 - \sqrt 2 \) không thỏa mãn bài toán.

      +) Với \(m = \sqrt 2 - 1\) ta có:

      \(\begin{array}{l}\left( 3 \right) \Leftrightarrow {\left( {\sqrt 2 - 1} \right)^3} + 6{\left( {\sqrt 2 - 1} \right)^2} + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow - 7 + 5\sqrt 2 + 6\left( {3 - 2\sqrt 2 } \right) + 7\sqrt 2 - 11 = 0\\ \Leftrightarrow - 18 + 12\sqrt 2 + 18 - 12\sqrt 2 = 0\\ \Leftrightarrow 0 = 0\,\,\,\left( {tm} \right)\end{array}\)

      \( \Rightarrow m = \sqrt 2 - 1\) thỏa mãn bài toán.

      Vậy \(m = \sqrt 2 - 1\) thỏa mãn bài toán.

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Vĩnh Long năm 2020 đặc sắc thuộc chuyên mục toán 9 sgk trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Vĩnh Long năm 2020: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 môn Toán Vĩnh Long năm 2020 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để giúp các em chuẩn bị tốt nhất, giaitoan.edu.vn xin giới thiệu chi tiết về cấu trúc đề thi, các dạng bài tập thường gặp và hướng dẫn giải chi tiết.

      Cấu trúc đề thi vào 10 môn Toán Vĩnh Long năm 2020

      Đề thi vào 10 môn Toán Vĩnh Long năm 2020 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và kỹ năng vận dụng đơn giản.
      • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, bao gồm các bài toán đại số, hình học và số học. Các bài toán tự luận thường đòi hỏi học sinh phải có khả năng phân tích, suy luận và vận dụng kiến thức một cách linh hoạt.

      Các dạng bài tập thường gặp trong đề thi

      Dưới đây là một số dạng bài tập thường gặp trong đề thi vào 10 môn Toán Vĩnh Long năm 2020:

      1. Bài toán về phương trình và hệ phương trình: Đây là một dạng bài tập rất phổ biến, đòi hỏi học sinh phải nắm vững các phương pháp giải phương trình và hệ phương trình.
      2. Bài toán về bất đẳng thức: Học sinh cần hiểu rõ các tính chất của bất đẳng thức và các phương pháp chứng minh bất đẳng thức.
      3. Bài toán về hàm số: Học sinh cần nắm vững các khái niệm về hàm số, đồ thị hàm số và các tính chất của hàm số.
      4. Bài toán về hình học: Các bài toán hình học thường liên quan đến các kiến thức về tam giác, tứ giác, đường tròn và các tính chất của chúng.
      5. Bài toán về số học: Các bài toán số học thường liên quan đến các kiến thức về số nguyên tố, ước số, bội số và các phép toán cơ bản.

      Hướng dẫn giải chi tiết một số bài toán trong đề thi

      Để giúp các em hiểu rõ hơn về cách giải các bài toán trong đề thi, chúng tôi xin giới thiệu một số bài toán mẫu và hướng dẫn giải chi tiết:

      Bài toán 1: Giải phương trình 2x + 3 = 7

      Hướng dẫn giải:

      1. Chuyển 3 sang vế phải: 2x = 7 - 3
      2. Rút gọn: 2x = 4
      3. Chia cả hai vế cho 2: x = 2

      Vậy nghiệm của phương trình là x = 2.

      Bài toán 2: Tính diện tích hình vuông có cạnh bằng 5cm

      Hướng dẫn giải:

      Diện tích hình vuông được tính bằng công thức: Diện tích = cạnh * cạnh

      Vậy diện tích hình vuông có cạnh bằng 5cm là: 5 * 5 = 25 cm2

      Luyện tập và ôn tập hiệu quả

      Để đạt kết quả tốt nhất trong kỳ thi tuyển sinh vào lớp 10 môn Toán Vĩnh Long năm 2020, các em cần luyện tập và ôn tập thường xuyên. Các em có thể tham khảo các tài liệu sau:

      • Sách giáo khoa Toán lớp 9
      • Sách bài tập Toán lớp 9
      • Các đề thi vào 10 môn Toán các năm trước
      • Các bài giảng trực tuyến trên giaitoan.edu.vn

      Lời khuyên cho thí sinh

      Trước khi bước vào phòng thi, các em cần:

      • Đọc kỹ đề thi và xác định rõ yêu cầu của từng bài toán.
      • Lập kế hoạch giải bài và phân bổ thời gian hợp lý.
      • Kiểm tra lại bài làm trước khi nộp.
      • Giữ bình tĩnh và tự tin trong quá trình làm bài.

      Giaitoan.edu.vn chúc các em thành công trong kỳ thi tuyển sinh vào lớp 10 môn Toán Vĩnh Long năm 2020!

      Tài liệu, đề thi và đáp án Toán 9