Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Đà Nẵng năm 2020

Đề thi vào 10 môn Toán Đà Nẵng năm 2020

Đề thi vào 10 môn Toán Đà Nẵng năm 2020: Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán thành phố Đà Nẵng năm 2020 chính thức. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này bao gồm đầy đủ các đề thi chính thức, kèm theo đáp án chi tiết và lời giải bài bản, giúp các em hiểu rõ phương pháp giải từng dạng bài.

Bài 1: a) Tính giá trị của biểu thức

Đề bài

    Bài 1:

    a) Tính giá trị của biểu thức \(A = \sqrt 3 + \sqrt {12} - \sqrt {27} - \sqrt {36} \)

    b) Cho biểu thức \(B = \dfrac{2}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }} + \dfrac{{3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\) với \(x > 0\) và \(x \ne 1\). Rút gọn biểu thức \(B\) và tìm \(x\) để \(B = 2\)

    Bài 2:

    Cho hàm số \(y = \dfrac{1}{2}{x^2}\).

    a) Vẽ đồ thị \(\left( P \right)\) của hàm số đã cho.

    b) Đường thẳng \(y = 8\) cắt đồ thị \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\), trong đó điểm \(B\) có hoành độ dương. Gọi \(H\) là chân đường cao hạ từ \(A\) của tam giác \(OAB\), với \(O\) là gốc tọa độ. Tính diện tích tam giác \(AHB\) (đơn vị đo trên các trục tọa độ là xentimét).

    Bài 3:

    a) Giải phương trình \(3{x^2} - 7x + 2 = 0.\)

    b) Biết phương trình \({x^2} - 19x + 7 = 0\) có hai nghiệm là \({x_1}\) và \({x_2},\) không giải phương trình, hãy tính giá trị biểu thức: \(P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} + {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120.\)

    Bài 4:

    a) Một số tự nhiên nhỏ hơn bình phương của nó 20 đơn vị. Tìm số tự nhiên đó.

    b) Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10km/h, vận tốc lúc xuống dốc là 15km/h (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính quãng đường AB.

    Bài 5:

    Cho tam giác ABC nội tiếp đường tròn O đường kính AB. Trên cung nhỏ \(BC\) của đường tròn \(\left( O \right)\) lấy điểm \(D\) (không trùng với \(B\) và \(C\)). Gọi \(H\) là chân đường vuông góc kẻ từ \(C\) đến \(AB\,\,\left( {H \in AB} \right)\) và \(E\) là giao điểm của \(CH\) với \(AD\).

    a) Chứng minh rằng tứ giác \(BDEH\) là tứ giác nội tiếp.

    b) Chứng minh rằng \(A{B^2} = AE.AD + BH.BA\).

    c) Đường thẳng qua \(E\) song song với \(AB\), cắt \(BC\) tại \(F\). Chứng minh rằng \(\angle CDF = {90^0}\) và đường tròn ngoại tiếp tam giác \(OBD\) đi qua trung điểm của đoạn \(CF\).

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải chi tiết
    • Tải về

    Bài 1:

    a) Tính giá trị của biểu thức \(A = \sqrt 3 + \sqrt {12} - \sqrt {27} - \sqrt {36} \)

    b) Cho biểu thức \(B = \dfrac{2}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }} + \dfrac{{3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\) với \(x > 0\) và \(x \ne 1\). Rút gọn biểu thức \(B\) và tìm \(x\) để \(B = 2\)

    Bài 2:

    Cho hàm số \(y = \dfrac{1}{2}{x^2}\).

    a) Vẽ đồ thị \(\left( P \right)\) của hàm số đã cho.

    b) Đường thẳng \(y = 8\) cắt đồ thị \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\), trong đó điểm \(B\) có hoành độ dương. Gọi \(H\) là chân đường cao hạ từ \(A\) của tam giác \(OAB\), với \(O\) là gốc tọa độ. Tính diện tích tam giác \(AHB\) (đơn vị đo trên các trục tọa độ là xentimét).

    Bài 3:

    a) Giải phương trình \(3{x^2} - 7x + 2 = 0.\)

    b) Biết phương trình \({x^2} - 19x + 7 = 0\) có hai nghiệm là \({x_1}\) và \({x_2},\) không giải phương trình, hãy tính giá trị biểu thức: \(P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} + {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120.\)

    Bài 4:

    a) Một số tự nhiên nhỏ hơn bình phương của nó 20 đơn vị. Tìm số tự nhiên đó.

    b) Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10km/h, vận tốc lúc xuống dốc là 15km/h (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính quãng đường AB.

    Bài 5:

    Cho tam giác ABC nội tiếp đường tròn O đường kính AB. Trên cung nhỏ \(BC\) của đường tròn \(\left( O \right)\) lấy điểm \(D\) (không trùng với \(B\) và \(C\)). Gọi \(H\) là chân đường vuông góc kẻ từ \(C\) đến \(AB\,\,\left( {H \in AB} \right)\) và \(E\) là giao điểm của \(CH\) với \(AD\).

    a) Chứng minh rằng tứ giác \(BDEH\) là tứ giác nội tiếp.

    b) Chứng minh rằng \(A{B^2} = AE.AD + BH.BA\).

    c) Đường thẳng qua \(E\) song song với \(AB\), cắt \(BC\) tại \(F\). Chứng minh rằng \(\angle CDF = {90^0}\) và đường tròn ngoại tiếp tam giác \(OBD\) đi qua trung điểm của đoạn \(CF\).

    Bài 1. (1,0 điểm)

    Cách giải:

    a) Tính giá trị của biểu thức \(A = \sqrt 3 + \sqrt {12} - \sqrt {27} - \sqrt {36} \)

    \(\begin{array}{l}\,\,\,\,\,A = \sqrt 3 + \sqrt {12} - \sqrt {27} - \sqrt {36} \\ \Leftrightarrow A = \sqrt 3 + \sqrt {{2^2}.3} - \sqrt {{3^2}.3} - \sqrt {{6^2}} \\ \Leftrightarrow A = \sqrt 3 + 2\sqrt 3 - 3\sqrt 3 - 6\\ \Leftrightarrow A = \sqrt 3 .\left( {1 + 2 - 3} \right) - 6\\ \Leftrightarrow A = - 6\end{array}\)

    Vậy \(A = - 6\).

    b) Cho biểu thức \(B = \dfrac{2}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }} + \dfrac{{3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\) với \(x > 0\) và \(x \ne 1\). Rút gọn biểu thức \(B\) và tìm \(x\) để \(B = 2\)

    Với \(x > 0\) và \(x \ne 1\) ta có:

    \(\begin{array}{l}\,\,\,\,\,B = \dfrac{2}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }} + \dfrac{{3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{2\sqrt x - \left( {\sqrt x - 1} \right) + 3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{2\sqrt x - \sqrt x + 1 + 3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{4\sqrt x - 4}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{4\left( {\sqrt x - 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \dfrac{4}{{\sqrt x }}\end{array}\)

    Vậy với \(x > 0,\,\,x \ne 1\) thì \(B = \dfrac{4}{{\sqrt x }}\).

    Để \(B = 2\) thì \(\dfrac{4}{{\sqrt x }} = 2 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right)\).

    Vậy để \(B = 2\) thì \(x = 4\).

    Bài 2. (1,5 điểm)

    Cách giải:

    Cho hàm số \(y = \dfrac{1}{2}{x^2}\).

    a) Vẽ đồ thị \(\left( P \right)\) của hàm số đã cho.

    Ta có bảng giá trị:

    \(x\)

    \( - 4\)

    \( - 2\)

    \(0\)

    \(2\)

    \(4\)

    \(y = \dfrac{1}{2}{x^2}\)

    \(8\)

    \(2\)

    \(0\)

    \(2\)

    \(8\)

    Vậy đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\) là đường cong nhận trục tung làm trục đối xứng và đi qua các điểm \(\left( { - 4;\,\,8} \right),\,\,\left( { - 2;\,\,2} \right),\,\,\left( {0;\,\,0} \right),\,\,\,\left( {2;\,\,2} \right),\,\,\,\left( {4;\,\,8} \right).\)

    Đồ thị hàm số:

    Đề thi vào 10 môn Toán Đà Nẵng năm 2020 1

    b) Đường thẳng \(y = 8\) cắt đồ thị \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\), trong đó điểm \(B\) có hoành độ dương. Gọi \(H\) là chân đường cao hạ từ \(A\) của tam giác \(OAB\), với \(O\) là gốc tọa độ. Tính diện tích tam giác \(AHB\) (đơn vị đo trên các trục tọa độ là xentimét).

    Xét phương trình hoành độ giao điểm của đồ thị hàm số \(\left( P \right)\) và đường thẳng \(y = 8\) ta có:

    \(\dfrac{1}{2}{x^2} = 8 \Leftrightarrow {x^2} = 16 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)

    +) Với \(x = - 4 \Rightarrow A\left( { - 4;\,\,8} \right)\).

    +) Với \(x = 4 \Rightarrow B\left( {4;\,\,8} \right)\) (Vì \(B\) là điểm có hoành độ dương).

    Đề thi vào 10 môn Toán Đà Nẵng năm 2020 2

    Gọi \(K\) là giao điểm của đường thẳng \(y = 8\) với trục tung \( \Rightarrow K\left( {0;\,\,8} \right).\)

    Ta có: \(\Delta AOB\) cân tại \(O\), có \(OK \bot AB\), \(OK = 8\,\,\left( {cm} \right),\,\,AB = 8\,\,\left( {cm} \right)\).

    \( \Rightarrow {S_{OAB}} = \dfrac{1}{2}OK.AB = \dfrac{1}{2}.8.8 = 32\,\,c{m^2}.\)

    Áp dụng định lý Pi-ta-go cho \(\Delta OBK\) vuông tại \(K\) ta có:

    \(OB = \sqrt {O{K^2} + K{B^2}} = \sqrt {{8^2} + {4^2}} = 4\sqrt 5 \,\,\left( {cm} \right)\)

    Lại có: \({S_{OAB}} = \dfrac{1}{2}AH.OB\)\( \Leftrightarrow \dfrac{1}{2}AH.4\sqrt 5 = 32 \Leftrightarrow AH = \dfrac{{16\sqrt 5 }}{5}\,\,\left( {cm} \right).\)

    Áp dụng định lý Pitago cho \(\Delta ABH\) vuông tại \(H\) ta có:

    \(BH = \sqrt {A{B^2} - A{H^2}} = \sqrt {{8^2} - {{\left( {\dfrac{{16\sqrt 5 }}{5}} \right)}^2}} = \sqrt {\dfrac{{64}}{5}} = \dfrac{{8\sqrt 5 }}{5}.\)

    \( \Rightarrow {S_{ABH}} = \dfrac{1}{2}AH.BH = \dfrac{1}{2}.\dfrac{{16\sqrt 5 }}{5}.\dfrac{{8\sqrt 5 }}{5} = \dfrac{{64}}{5}\, = 12,8\,\,c{m^2}.\)

    Vậy diện tích tam giác \(ABH\) là \(12,8\,c{m^2}.\)

    Bài 3. (1,5 điểm)

    Cách giải:

    a) Giải phương trình \(3{x^2} - 7x + 2 = 0.\)

    Phương trình có: \(\Delta = {b^2} - 4ac = {7^2} - 4.3.2 = 25 > 0\)

    \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{x_1} = \dfrac{{7 + \sqrt {25} }}{6} = 2\\{x_2} = \dfrac{{7 - \sqrt {25} }}{6} = \dfrac{1}{3}\end{array} \right..\)

    Vậy phương trình đã cho tập nghiệm: \(S = \left\{ {\dfrac{1}{3};\,\,2} \right\}.\)

    b) Biết phương trình \({x^2} - 19x + 7 = 0\) có hai nghiệm là \({x_1}\) và \({x_2},\) không giải phương trình, hãy tính giá trị biểu thức: \(P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} + {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120.\)

    Xét phương trình: \({x^2} - 19x + 7 = 0\) có \(\Delta = {19^2} - 4.7 = 333 > 0\) \( \Rightarrow \) Phương trình có hai nghiệm phân biệt\({x_1},\,\,{x_2}.\)

    Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 19\\{x_1}{x_2} = 7\end{array} \right..\)

    Ta có: \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình đã cho \( \Rightarrow \left\{ \begin{array}{l}x_1^2 - 19{x_1} + 7 = 0\\x_2^2 - 19{x_2} + 7 = 0\end{array} \right..\)

    Theo đề bài ta có:

    \(\begin{array}{l}P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} + {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120\\\,\,\,\,\, = {x_2}{\left[ {2\left( {x_1^2 - 19{x_1} + 7} \right) - 14 + {x_1}{x_2} - 3} \right]^2} + {x_1}{\left[ {2\left( {x_2^2 - 19{x_2} + 7} \right) - 14 + {x_1}{x_2} - 3} \right]^2} + 120\\\,\,\,\,\, = {x_2}{\left( {{x_1}{x_2} - 17} \right)^2} + {x_1}{\left( {{x_1}{x_2} - 17} \right)^2} + 120\\\,\,\,\,\, = {\left( {{x_1}{x_2} - 17} \right)^2}\left( {{x_1} + {x_2}} \right) + 120\\\,\,\,\,\, = {\left( {7 - 17} \right)^2}.19 + 120\\\,\,\,\,\, = {19.10^2} + 120\\\,\,\,\, = 1900 + 120\\\,\,\,\, = 2020\end{array}\)

    Bài 4. (2,0 điểm)

    Cách giải:

    a) Một số tự nhiên nhỏ hơn bình phương của nó 20 đơn vị. Tìm số tự nhiên đó.

    Gọi số tự nhiên cần tìm là \(x\) (ĐK: \(x \in \mathbb{N}\)).

    Bình phương của số tự nhiên \(x\) là \({x^2}\).

    Vì số tự nhiên cần tìm nhỏ hơn bình phương của nó 20 đơn vị nên ta có phương trình:

    \(\begin{array}{l}\,\,\,\,\,\,\,{x^2} - x = 20\\ \Leftrightarrow {x^2} - x - 20 = 0\\ \Leftrightarrow {x^2} - 5x + 4x - 20 = 0\\ \Leftrightarrow x\left( {x - 5} \right) + 4\left( {x - 5} \right) = 0\\ \Leftrightarrow \left( {x - 5} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\x + 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\,\,\,\,\,\,\,\left( {tm} \right)\\x = - 4\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

    Vậy số tự nhiên cần tìm là 5.

    b) Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10km/h, vận tốc lúc xuống dốc là 15km/h (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính quãng đường AB.

    Gọi quãng đường lên dốc lúc đi là \(x\) (km), quãng đường xuống dốc lúc đi là \(y\) (km) (ĐK: \(x,y > 0\))

    \( \Rightarrow \) Quãng đường lên dốc lúc về là \(y\) (km), quãng đường xuống dốc lúc về là \(x\) (km).

    Thời gian lúc đi là 16 phút \( = \dfrac{{16}}{{60}} = \dfrac{4}{{15}}\)(h) nên ta có phương trình:

    \(\dfrac{x}{{10}} + \dfrac{y}{{15}} = \dfrac{4}{{15}} \Leftrightarrow 3x + 2y = 8\,\,\left( 1 \right)\).

    Thời gian lúc về là 14 phút \( = \dfrac{{14}}{{60}} = \dfrac{7}{{30}}\)(h) nên ta có phương trình:

    \(\dfrac{y}{{10}} + \dfrac{x}{{15}} = \dfrac{7}{{30}} \Leftrightarrow 3x + 2x = 7\,\,\left( 2 \right)\).

    Từ (1) và (2) ta có hệ phương trình:

    \(\left\{ \begin{array}{l}3x + 2y = 8\\3y + 2x = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9x + 6y = 24\\4x + 6y = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 10\\3x + 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\3.2 + 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\,\,\left( {tm} \right)\)

    \( \Rightarrow \) Quãng đường lên dốc lúc đi là \(2\,\,km\), quãng đường xuống dốc lúc đi là \(1km\).

    Vậy độ dài quãng đường AB là \(2 + 1 = 3\,\,\left( {km} \right)\).

    Bài 5. (2,0 điểm)

    Cách giải:

    Cho tam giác ABC nội tiếp đường tròn O đường kính AB. Trên cung nhỏ \(BC\) của đường tròn \(\left( O \right)\) lấy điểm \(D\) (không trùng với \(B\) và \(C\)). Gọi \(H\) là chân đường vuông góc kẻ từ \(C\) đến \(AB\,\,\left( {H \in AB} \right)\) và \(E\) là giao điểm của \(CH\) với \(AD\).

    Đề thi vào 10 môn Toán Đà Nẵng năm 2020 3

    a) Chứng minh rằng tứ giác \(BDEH\) là tứ giác nội tiếp.

    Vì \(\angle ADB\) là góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle ADB = {90^0}\) hay \(\angle EDB = {90^0}\).

    Lại có \(CH \bot AB\) (gt) nên \(\angle CHB = {90^0} \Rightarrow \angle EHB = {90^0}\).

    Xét tứ giác \(BDEH\) có: \(\angle EDB + \angle EHB = {90^0} + {90^0} = {180^0}\).

    \( \Rightarrow BDEH\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng \({180^0}\)).

    b) Chứng minh rằng \(A{B^2} = AE.AD + BH.BA\).

    Vì \(ABDC\) là tứ giác nội tiếp đường tròn \(\left( O \right)\) nên \(\angle ADC = \angle ABC\) (1) (hai góc nội tiếp cùng chắn cung \(AC\)).

    Ta lại có:

    \(\angle ABC + \angle CAB = {90^0}\) (do tam giác \(ABC\) có \(\angle ACB = {90^0}\) - góc nội tiếp chắn nửa đường tròn).

    \(\angle ACH + \angle CAB = {90^0}\) (do tam giác \(ACH\) vuông tại \(H\)).

    \( \Rightarrow \angle ABC = \angle ACH\) (2) (cùng phụ với \(\angle CAB\)).

    Từ (1) và (2) \( \Rightarrow \angle ADC = \angle ACH\) \(\left( { = \angle ABC} \right)\) hay \(\angle ADC = \angle ACE\).

    Xét \(\Delta ACE\) và \(\Delta ADC\) có:

    \(\angle CAD\) chung;

    \(\angle ACE = \angle ADC\,\,\left( {cmt} \right)\).

    \(\begin{array}{l} \Rightarrow \Delta ACE \sim \Delta ADC\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AC}}{{AD}} = \dfrac{{AE}}{{AC}} \Rightarrow A{C^2} = AE.AD\,\,\,\left( * \right)\end{array}\)

    Xét tam giác \(ABC\) vuông tại \(C\), đường cao \(CH\) ta có:

    \(B{C^2} = BH.BA\,\,\left( {2*} \right)\) (hệ thức lượng trong tam giác vuông).

    Từ (*) và (2*) suy ra \(A{C^2} + B{C^2} = AE.AD + BH.BA\).

    Lại có \(\Delta ABC\) vuông tại \(C\) nên \(A{C^2} + B{C^2} = A{B^2}\) (định lí Pytago).

    Vậy \(A{B^2} = AE.AD + BH.BA\)(đpcm).

    c) Đường thẳng qua \(E\) song song với \(AB\), cắt \(BC\) tại \(F\). Chứng minh rằng \(\angle CDF = {90^0}\) và đường tròn ngoại tiếp tam giác \(OBD\) đi qua trung điểm của đoạn \(CF\).

    *) Vì \(EF//AB\,\,\,\left( {gt} \right)\) nên \(\angle CFE = \angle CBA\) (đồng vị).

    Mà \(\angle CBA = \angle CDA\) (hai góc nội tiếp cùng chắn cung \(AC\)).

    \( \Rightarrow \angle CFE = \angle CDA\).

    \( \Rightarrow \) Tứ giác \(CDFE\) là tứ giác nội tiếp (Tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

    \(\angle CDF + \angle CEF = {180^0}\) (tổng hai góc đối của tứ giác nội tiếp).

    Ta lại có:

    \(\left\{ \begin{array}{l}CH \bot AB\,\,\left( {gt} \right)\\EF//AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow EF \bot CH\) (từ vuông góc đến song song) \( \Rightarrow \angle CEF = {90^0}\).

    \( \Rightarrow \angle CDF = {180^0} - \angle CEF = {180^0} - {90^0} = {90^0}\,\,\left( {dpcm} \right)\).

    *) Gọi \(I\) là giao điểm của \(CF\) và đường tròn ngoại tiếp tam giác \(OBD\).

    Ta có:

    \(\begin{array}{l}\angle ADB = \angle ADF + \angle FDB = {90^0}\\\angle CDF = \angle ADF + \angle CDA = {90^0}\end{array}\)

    \( \Rightarrow \angle FBD = \angle CDA\) (cùng phụ với \(\angle ADF\)).

    Mà \(\angle CDA = \angle CBA\) (hai góc nội tiếp cùng chắn cung \(AC\)).

    \( \Rightarrow \angle FDB = \angle CBA\) \(\left( { = \angle CDA} \right)\).

    Mà \(\angle CBA = \angle OBI = \angle ODI\) (hai góc nội tiếp cùng chắn cung \(OI\)).

    \(\begin{array}{l} \Rightarrow \angle FDB = \angle ODI\\ \Rightarrow \angle FDB + \angle ODF = \angle ODI + \angle ODF\\ \Rightarrow \angle ODB = \angle IDF\,\,\left( 3 \right)\end{array}\)

    Ta có: tứ giác \(CDFE\) nội tiếp (cmt) nên \(\angle IFD = \angle CFD = \angle CED = AEH\) (hai góc nội tiếp cùng chắn cung \(CD\)).

    Ta lại có:

    \(\begin{array}{l}\angle AEH + \angle EAH = {90^0}\\\angle ABD + \angle BAD = {90^0}\end{array}\)

    Mà \(\angle EAH = \angle BAD\) nên \(\angle AEH = \angle ABD = \angle OBD\) \( \Rightarrow \angle IFD = \angle OBD\) (4) 

    Lại có: \(OD = OB\,\,\) (=bán kính) nên \(\Delta OBD\) cân tại \(O\), do đó \(\angle OBD = \angle ODB\) (5).

    Từ (3), (4), (5) suy ra \(\angle IDF = \angle IFD\) \( \Rightarrow \Delta IDF\) cân tại \(I\) (định nghĩa) \( \Rightarrow ID = IF\) (3*) (tính chất tam giác cân).

    Ta có:

    \(\angle IDF + \angle IDC = \angle CDF = {90^0}\)

    \(\angle IFD + \angle ICD = {90^0}\) (do tam giác \(CDF\) vuông tại \(D\)).

    \( \Rightarrow \angle IDC = \angle ICD \Rightarrow \Delta ICD\) cân tại \(I\) (định nghĩa) \( \Rightarrow IC = ID\) (4*) (tính chất tam giác cân).

    Từ (3*) và (4*) suy ra \(IC = IF\,\,\left( { = ID} \right)\).

    Vậy \(I\) là trung điểm của \(CF\) (đpcm).

    Lời giải chi tiết

      Bài 1. (1,0 điểm)

      Cách giải:

      a) Tính giá trị của biểu thức \(A = \sqrt 3 + \sqrt {12} - \sqrt {27} - \sqrt {36} \)

      \(\begin{array}{l}\,\,\,\,\,A = \sqrt 3 + \sqrt {12} - \sqrt {27} - \sqrt {36} \\ \Leftrightarrow A = \sqrt 3 + \sqrt {{2^2}.3} - \sqrt {{3^2}.3} - \sqrt {{6^2}} \\ \Leftrightarrow A = \sqrt 3 + 2\sqrt 3 - 3\sqrt 3 - 6\\ \Leftrightarrow A = \sqrt 3 .\left( {1 + 2 - 3} \right) - 6\\ \Leftrightarrow A = - 6\end{array}\)

      Vậy \(A = - 6\).

      b) Cho biểu thức \(B = \dfrac{2}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }} + \dfrac{{3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\) với \(x > 0\) và \(x \ne 1\). Rút gọn biểu thức \(B\) và tìm \(x\) để \(B = 2\)

      Với \(x > 0\) và \(x \ne 1\) ta có:

      \(\begin{array}{l}\,\,\,\,\,B = \dfrac{2}{{\sqrt x - 1}} - \dfrac{1}{{\sqrt x }} + \dfrac{{3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{2\sqrt x - \left( {\sqrt x - 1} \right) + 3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{2\sqrt x - \sqrt x + 1 + 3\sqrt x - 5}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{4\sqrt x - 4}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\\ \Leftrightarrow B = \dfrac{{4\left( {\sqrt x - 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \dfrac{4}{{\sqrt x }}\end{array}\)

      Vậy với \(x > 0,\,\,x \ne 1\) thì \(B = \dfrac{4}{{\sqrt x }}\).

      Để \(B = 2\) thì \(\dfrac{4}{{\sqrt x }} = 2 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right)\).

      Vậy để \(B = 2\) thì \(x = 4\).

      Bài 2. (1,5 điểm)

      Cách giải:

      Cho hàm số \(y = \dfrac{1}{2}{x^2}\).

      a) Vẽ đồ thị \(\left( P \right)\) của hàm số đã cho.

      Ta có bảng giá trị:

      \(x\)

      \( - 4\)

      \( - 2\)

      \(0\)

      \(2\)

      \(4\)

      \(y = \dfrac{1}{2}{x^2}\)

      \(8\)

      \(2\)

      \(0\)

      \(2\)

      \(8\)

      Vậy đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\) là đường cong nhận trục tung làm trục đối xứng và đi qua các điểm \(\left( { - 4;\,\,8} \right),\,\,\left( { - 2;\,\,2} \right),\,\,\left( {0;\,\,0} \right),\,\,\,\left( {2;\,\,2} \right),\,\,\,\left( {4;\,\,8} \right).\)

      Đồ thị hàm số:

      Đề thi vào 10 môn Toán Đà Nẵng năm 2020 1 1

      b) Đường thẳng \(y = 8\) cắt đồ thị \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\), trong đó điểm \(B\) có hoành độ dương. Gọi \(H\) là chân đường cao hạ từ \(A\) của tam giác \(OAB\), với \(O\) là gốc tọa độ. Tính diện tích tam giác \(AHB\) (đơn vị đo trên các trục tọa độ là xentimét).

      Xét phương trình hoành độ giao điểm của đồ thị hàm số \(\left( P \right)\) và đường thẳng \(y = 8\) ta có:

      \(\dfrac{1}{2}{x^2} = 8 \Leftrightarrow {x^2} = 16 \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 4\end{array} \right.\)

      +) Với \(x = - 4 \Rightarrow A\left( { - 4;\,\,8} \right)\).

      +) Với \(x = 4 \Rightarrow B\left( {4;\,\,8} \right)\) (Vì \(B\) là điểm có hoành độ dương).

      Đề thi vào 10 môn Toán Đà Nẵng năm 2020 1 2

      Gọi \(K\) là giao điểm của đường thẳng \(y = 8\) với trục tung \( \Rightarrow K\left( {0;\,\,8} \right).\)

      Ta có: \(\Delta AOB\) cân tại \(O\), có \(OK \bot AB\), \(OK = 8\,\,\left( {cm} \right),\,\,AB = 8\,\,\left( {cm} \right)\).

      \( \Rightarrow {S_{OAB}} = \dfrac{1}{2}OK.AB = \dfrac{1}{2}.8.8 = 32\,\,c{m^2}.\)

      Áp dụng định lý Pi-ta-go cho \(\Delta OBK\) vuông tại \(K\) ta có:

      \(OB = \sqrt {O{K^2} + K{B^2}} = \sqrt {{8^2} + {4^2}} = 4\sqrt 5 \,\,\left( {cm} \right)\)

      Lại có: \({S_{OAB}} = \dfrac{1}{2}AH.OB\)\( \Leftrightarrow \dfrac{1}{2}AH.4\sqrt 5 = 32 \Leftrightarrow AH = \dfrac{{16\sqrt 5 }}{5}\,\,\left( {cm} \right).\)

      Áp dụng định lý Pitago cho \(\Delta ABH\) vuông tại \(H\) ta có:

      \(BH = \sqrt {A{B^2} - A{H^2}} = \sqrt {{8^2} - {{\left( {\dfrac{{16\sqrt 5 }}{5}} \right)}^2}} = \sqrt {\dfrac{{64}}{5}} = \dfrac{{8\sqrt 5 }}{5}.\)

      \( \Rightarrow {S_{ABH}} = \dfrac{1}{2}AH.BH = \dfrac{1}{2}.\dfrac{{16\sqrt 5 }}{5}.\dfrac{{8\sqrt 5 }}{5} = \dfrac{{64}}{5}\, = 12,8\,\,c{m^2}.\)

      Vậy diện tích tam giác \(ABH\) là \(12,8\,c{m^2}.\)

      Bài 3. (1,5 điểm)

      Cách giải:

      a) Giải phương trình \(3{x^2} - 7x + 2 = 0.\)

      Phương trình có: \(\Delta = {b^2} - 4ac = {7^2} - 4.3.2 = 25 > 0\)

      \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{x_1} = \dfrac{{7 + \sqrt {25} }}{6} = 2\\{x_2} = \dfrac{{7 - \sqrt {25} }}{6} = \dfrac{1}{3}\end{array} \right..\)

      Vậy phương trình đã cho tập nghiệm: \(S = \left\{ {\dfrac{1}{3};\,\,2} \right\}.\)

      b) Biết phương trình \({x^2} - 19x + 7 = 0\) có hai nghiệm là \({x_1}\) và \({x_2},\) không giải phương trình, hãy tính giá trị biểu thức: \(P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} + {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120.\)

      Xét phương trình: \({x^2} - 19x + 7 = 0\) có \(\Delta = {19^2} - 4.7 = 333 > 0\) \( \Rightarrow \) Phương trình có hai nghiệm phân biệt\({x_1},\,\,{x_2}.\)

      Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 19\\{x_1}{x_2} = 7\end{array} \right..\)

      Ta có: \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình đã cho \( \Rightarrow \left\{ \begin{array}{l}x_1^2 - 19{x_1} + 7 = 0\\x_2^2 - 19{x_2} + 7 = 0\end{array} \right..\)

      Theo đề bài ta có:

      \(\begin{array}{l}P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} + {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120\\\,\,\,\,\, = {x_2}{\left[ {2\left( {x_1^2 - 19{x_1} + 7} \right) - 14 + {x_1}{x_2} - 3} \right]^2} + {x_1}{\left[ {2\left( {x_2^2 - 19{x_2} + 7} \right) - 14 + {x_1}{x_2} - 3} \right]^2} + 120\\\,\,\,\,\, = {x_2}{\left( {{x_1}{x_2} - 17} \right)^2} + {x_1}{\left( {{x_1}{x_2} - 17} \right)^2} + 120\\\,\,\,\,\, = {\left( {{x_1}{x_2} - 17} \right)^2}\left( {{x_1} + {x_2}} \right) + 120\\\,\,\,\,\, = {\left( {7 - 17} \right)^2}.19 + 120\\\,\,\,\,\, = {19.10^2} + 120\\\,\,\,\, = 1900 + 120\\\,\,\,\, = 2020\end{array}\)

      Bài 4. (2,0 điểm)

      Cách giải:

      a) Một số tự nhiên nhỏ hơn bình phương của nó 20 đơn vị. Tìm số tự nhiên đó.

      Gọi số tự nhiên cần tìm là \(x\) (ĐK: \(x \in \mathbb{N}\)).

      Bình phương của số tự nhiên \(x\) là \({x^2}\).

      Vì số tự nhiên cần tìm nhỏ hơn bình phương của nó 20 đơn vị nên ta có phương trình:

      \(\begin{array}{l}\,\,\,\,\,\,\,{x^2} - x = 20\\ \Leftrightarrow {x^2} - x - 20 = 0\\ \Leftrightarrow {x^2} - 5x + 4x - 20 = 0\\ \Leftrightarrow x\left( {x - 5} \right) + 4\left( {x - 5} \right) = 0\\ \Leftrightarrow \left( {x - 5} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\x + 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\,\,\,\,\,\,\,\left( {tm} \right)\\x = - 4\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

      Vậy số tự nhiên cần tìm là 5.

      b) Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10km/h, vận tốc lúc xuống dốc là 15km/h (vận tốc lên dốc, xuống dốc lúc đi và về như nhau). Tính quãng đường AB.

      Gọi quãng đường lên dốc lúc đi là \(x\) (km), quãng đường xuống dốc lúc đi là \(y\) (km) (ĐK: \(x,y > 0\))

      \( \Rightarrow \) Quãng đường lên dốc lúc về là \(y\) (km), quãng đường xuống dốc lúc về là \(x\) (km).

      Thời gian lúc đi là 16 phút \( = \dfrac{{16}}{{60}} = \dfrac{4}{{15}}\)(h) nên ta có phương trình:

      \(\dfrac{x}{{10}} + \dfrac{y}{{15}} = \dfrac{4}{{15}} \Leftrightarrow 3x + 2y = 8\,\,\left( 1 \right)\).

      Thời gian lúc về là 14 phút \( = \dfrac{{14}}{{60}} = \dfrac{7}{{30}}\)(h) nên ta có phương trình:

      \(\dfrac{y}{{10}} + \dfrac{x}{{15}} = \dfrac{7}{{30}} \Leftrightarrow 3x + 2x = 7\,\,\left( 2 \right)\).

      Từ (1) và (2) ta có hệ phương trình:

      \(\left\{ \begin{array}{l}3x + 2y = 8\\3y + 2x = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9x + 6y = 24\\4x + 6y = 14\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 10\\3x + 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\3.2 + 2y = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\,\,\left( {tm} \right)\)

      \( \Rightarrow \) Quãng đường lên dốc lúc đi là \(2\,\,km\), quãng đường xuống dốc lúc đi là \(1km\).

      Vậy độ dài quãng đường AB là \(2 + 1 = 3\,\,\left( {km} \right)\).

      Bài 5. (2,0 điểm)

      Cách giải:

      Cho tam giác ABC nội tiếp đường tròn O đường kính AB. Trên cung nhỏ \(BC\) của đường tròn \(\left( O \right)\) lấy điểm \(D\) (không trùng với \(B\) và \(C\)). Gọi \(H\) là chân đường vuông góc kẻ từ \(C\) đến \(AB\,\,\left( {H \in AB} \right)\) và \(E\) là giao điểm của \(CH\) với \(AD\).

      Đề thi vào 10 môn Toán Đà Nẵng năm 2020 1 3

      a) Chứng minh rằng tứ giác \(BDEH\) là tứ giác nội tiếp.

      Vì \(\angle ADB\) là góc nội tiếp chắn nửa đường tròn \(\left( O \right)\) nên \(\angle ADB = {90^0}\) hay \(\angle EDB = {90^0}\).

      Lại có \(CH \bot AB\) (gt) nên \(\angle CHB = {90^0} \Rightarrow \angle EHB = {90^0}\).

      Xét tứ giác \(BDEH\) có: \(\angle EDB + \angle EHB = {90^0} + {90^0} = {180^0}\).

      \( \Rightarrow BDEH\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng \({180^0}\)).

      b) Chứng minh rằng \(A{B^2} = AE.AD + BH.BA\).

      Vì \(ABDC\) là tứ giác nội tiếp đường tròn \(\left( O \right)\) nên \(\angle ADC = \angle ABC\) (1) (hai góc nội tiếp cùng chắn cung \(AC\)).

      Ta lại có:

      \(\angle ABC + \angle CAB = {90^0}\) (do tam giác \(ABC\) có \(\angle ACB = {90^0}\) - góc nội tiếp chắn nửa đường tròn).

      \(\angle ACH + \angle CAB = {90^0}\) (do tam giác \(ACH\) vuông tại \(H\)).

      \( \Rightarrow \angle ABC = \angle ACH\) (2) (cùng phụ với \(\angle CAB\)).

      Từ (1) và (2) \( \Rightarrow \angle ADC = \angle ACH\) \(\left( { = \angle ABC} \right)\) hay \(\angle ADC = \angle ACE\).

      Xét \(\Delta ACE\) và \(\Delta ADC\) có:

      \(\angle CAD\) chung;

      \(\angle ACE = \angle ADC\,\,\left( {cmt} \right)\).

      \(\begin{array}{l} \Rightarrow \Delta ACE \sim \Delta ADC\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AC}}{{AD}} = \dfrac{{AE}}{{AC}} \Rightarrow A{C^2} = AE.AD\,\,\,\left( * \right)\end{array}\)

      Xét tam giác \(ABC\) vuông tại \(C\), đường cao \(CH\) ta có:

      \(B{C^2} = BH.BA\,\,\left( {2*} \right)\) (hệ thức lượng trong tam giác vuông).

      Từ (*) và (2*) suy ra \(A{C^2} + B{C^2} = AE.AD + BH.BA\).

      Lại có \(\Delta ABC\) vuông tại \(C\) nên \(A{C^2} + B{C^2} = A{B^2}\) (định lí Pytago).

      Vậy \(A{B^2} = AE.AD + BH.BA\)(đpcm).

      c) Đường thẳng qua \(E\) song song với \(AB\), cắt \(BC\) tại \(F\). Chứng minh rằng \(\angle CDF = {90^0}\) và đường tròn ngoại tiếp tam giác \(OBD\) đi qua trung điểm của đoạn \(CF\).

      *) Vì \(EF//AB\,\,\,\left( {gt} \right)\) nên \(\angle CFE = \angle CBA\) (đồng vị).

      Mà \(\angle CBA = \angle CDA\) (hai góc nội tiếp cùng chắn cung \(AC\)).

      \( \Rightarrow \angle CFE = \angle CDA\).

      \( \Rightarrow \) Tứ giác \(CDFE\) là tứ giác nội tiếp (Tứ giác có 2 đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau).

      \(\angle CDF + \angle CEF = {180^0}\) (tổng hai góc đối của tứ giác nội tiếp).

      Ta lại có:

      \(\left\{ \begin{array}{l}CH \bot AB\,\,\left( {gt} \right)\\EF//AB\,\,\left( {gt} \right)\end{array} \right. \Rightarrow EF \bot CH\) (từ vuông góc đến song song) \( \Rightarrow \angle CEF = {90^0}\).

      \( \Rightarrow \angle CDF = {180^0} - \angle CEF = {180^0} - {90^0} = {90^0}\,\,\left( {dpcm} \right)\).

      *) Gọi \(I\) là giao điểm của \(CF\) và đường tròn ngoại tiếp tam giác \(OBD\).

      Ta có:

      \(\begin{array}{l}\angle ADB = \angle ADF + \angle FDB = {90^0}\\\angle CDF = \angle ADF + \angle CDA = {90^0}\end{array}\)

      \( \Rightarrow \angle FBD = \angle CDA\) (cùng phụ với \(\angle ADF\)).

      Mà \(\angle CDA = \angle CBA\) (hai góc nội tiếp cùng chắn cung \(AC\)).

      \( \Rightarrow \angle FDB = \angle CBA\) \(\left( { = \angle CDA} \right)\).

      Mà \(\angle CBA = \angle OBI = \angle ODI\) (hai góc nội tiếp cùng chắn cung \(OI\)).

      \(\begin{array}{l} \Rightarrow \angle FDB = \angle ODI\\ \Rightarrow \angle FDB + \angle ODF = \angle ODI + \angle ODF\\ \Rightarrow \angle ODB = \angle IDF\,\,\left( 3 \right)\end{array}\)

      Ta có: tứ giác \(CDFE\) nội tiếp (cmt) nên \(\angle IFD = \angle CFD = \angle CED = AEH\) (hai góc nội tiếp cùng chắn cung \(CD\)).

      Ta lại có:

      \(\begin{array}{l}\angle AEH + \angle EAH = {90^0}\\\angle ABD + \angle BAD = {90^0}\end{array}\)

      Mà \(\angle EAH = \angle BAD\) nên \(\angle AEH = \angle ABD = \angle OBD\) \( \Rightarrow \angle IFD = \angle OBD\) (4) 

      Lại có: \(OD = OB\,\,\) (=bán kính) nên \(\Delta OBD\) cân tại \(O\), do đó \(\angle OBD = \angle ODB\) (5).

      Từ (3), (4), (5) suy ra \(\angle IDF = \angle IFD\) \( \Rightarrow \Delta IDF\) cân tại \(I\) (định nghĩa) \( \Rightarrow ID = IF\) (3*) (tính chất tam giác cân).

      Ta có:

      \(\angle IDF + \angle IDC = \angle CDF = {90^0}\)

      \(\angle IFD + \angle ICD = {90^0}\) (do tam giác \(CDF\) vuông tại \(D\)).

      \( \Rightarrow \angle IDC = \angle ICD \Rightarrow \Delta ICD\) cân tại \(I\) (định nghĩa) \( \Rightarrow IC = ID\) (4*) (tính chất tam giác cân).

      Từ (3*) và (4*) suy ra \(IC = IF\,\,\left( { = ID} \right)\).

      Vậy \(I\) là trung điểm của \(CF\) (đpcm).

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Đà Nẵng năm 2020 đặc sắc thuộc chuyên mục giải bài tập toán lớp 9 trên nền tảng môn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Đà Nẵng năm 2020: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 môn Toán tại Đà Nẵng năm 2020 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để chuẩn bị tốt nhất cho kỳ thi này, việc nắm vững cấu trúc đề thi, các dạng bài thường gặp và phương pháp giải quyết là vô cùng cần thiết. Bài viết này sẽ cung cấp một phân tích chi tiết về đề thi vào 10 môn Toán Đà Nẵng năm 2020, cùng với hướng dẫn giải các bài toán điển hình.

      Cấu trúc đề thi vào 10 môn Toán Đà Nẵng năm 2020

      Đề thi vào 10 môn Toán Đà Nẵng năm 2020 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và khả năng vận dụng nhanh.
      • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, yêu cầu học sinh trình bày lời giải chi tiết và chứng minh các kết quả.

      Các chủ đề thường xuất hiện trong đề thi bao gồm:

      • Đại số: Phương trình, bất phương trình, hệ phương trình, hàm số, phương trình bậc hai.
      • Hình học: Tam giác, tứ giác, đường tròn, hệ tọa độ.
      • Số học: Các phép toán cơ bản, chia hết, ước chung lớn nhất, bội chung nhỏ nhất.

      Các dạng bài thường gặp trong đề thi

      Dưới đây là một số dạng bài thường gặp trong đề thi vào 10 môn Toán Đà Nẵng năm 2020:

      1. Bài toán về phương trình và bất phương trình: Yêu cầu học sinh giải phương trình, bất phương trình, hệ phương trình, hoặc tìm điều kiện để phương trình có nghiệm.
      2. Bài toán về hàm số: Yêu cầu học sinh xác định hàm số, vẽ đồ thị hàm số, hoặc tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
      3. Bài toán về hình học: Yêu cầu học sinh chứng minh các tính chất hình học, tính diện tích, chu vi, hoặc giải các bài toán liên quan đến đường tròn, tam giác, tứ giác.
      4. Bài toán về số học: Yêu cầu học sinh tìm ước chung lớn nhất, bội chung nhỏ nhất, hoặc giải các bài toán liên quan đến chia hết.

      Hướng dẫn giải một số bài toán điển hình

      Ví dụ 1: Giải phương trình 2x + 3 = 7

      Lời giải:

      2x + 3 = 7

      2x = 7 - 3

      2x = 4

      x = 2

      Ví dụ 2: Tính diện tích tam giác ABC vuông tại A, biết AB = 3cm, AC = 4cm.

      Lời giải:

      Diện tích tam giác ABC là: S = (1/2) * AB * AC = (1/2) * 3 * 4 = 6 cm2

      Lời khuyên để ôn thi hiệu quả

      • Nắm vững kiến thức cơ bản: Đảm bảo hiểu rõ các định nghĩa, định lý, công thức trong chương trình học.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán và làm quen với các dạng bài.
      • Học hỏi kinh nghiệm từ các anh chị đi trước: Tham khảo các đề thi năm trước và học hỏi cách giải của các anh chị đã thi đỗ.
      • Giữ tâm lý thoải mái: Tránh căng thẳng và áp lực, hãy giữ tâm lý thoải mái và tự tin khi làm bài thi.

      Tài liệu tham khảo hữu ích

      Ngoài bộ đề thi vào 10 môn Toán Đà Nẵng năm 2020, các em học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán lớp 9
      • Sách bài tập Toán lớp 9
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Kết luận

      Đề thi vào 10 môn Toán Đà Nẵng năm 2020 là một kỳ thi quan trọng, đòi hỏi sự chuẩn bị kỹ lưỡng và nỗ lực không ngừng. Hy vọng với những phân tích và hướng dẫn giải trong bài viết này, các em học sinh sẽ có thêm kiến thức và tự tin hơn để đạt kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 9