Logo Header
  1. Môn Toán
  2. Đề số 26 - Đề thi vào lớp 10 môn Toán

Đề số 26 - Đề thi vào lớp 10 môn Toán

Đề số 26 - Đề thi vào lớp 10 môn Toán tại giaitoan.edu.vn

Chào mừng bạn đến với bài viết phân tích và giải chi tiết Đề số 26 - Đề thi vào lớp 10 môn Toán. Đây là một trong những đề thi thử quan trọng giúp học sinh lớp 9 làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong kỳ thi sắp tới.

Đề thi vào lớp 10 môn Toán - Đề số 26 có đáp án và lời giải chi tiết

Đề bài

Câu 1. (1,5 điểm)

1) Tìm \(x\) , biết \(2\sqrt x = 3.\)

2) Giải phương trình: \(43{x^2} - 2018x + 1975 = 0.\)

3) Cho hàm số \(y = \left( {a + 1} \right){x^2}.\) Tìm a để hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0.\)

Câu 2. (2,0 điểm) Cho phương trình: \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 2 = 0\,\,\left( 1 \right),\) m là tham số

1) Tìm m để \(x = 2\) là nghiệm của phương trình (1).

2) Xác định m để phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện: \(x_1^2 + x_2^2 = 10\)

Câu 3. (1,5 điểm):

1) Trong mặt phẳng tọa độ \(Oxy\) cho các đường thẳng có phương trình: \(\left( {{d_1}} \right):\;\;y = x + 2,\;\;\left( {{d_2}} \right):\;\;y = - 2\) và \(\;\left( {{d_3}} \right):\;\;y = \left( {k + 1} \right)x + k.\) Tìm \(k\) để các đường thẳng trên đồng quy.

2) Rút gọn và tìm giá trị lớn nhất của biểu thức:\(A = \left( {\dfrac{1}{{1 - \sqrt x }} + \dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{3}\) (với \(x \ge 0,x \ne 1\)).

Câu 4. (3 điểm):

Cho tam giác \(ABC\) có ba góc nhọn và \(\widehat {A\;} = {45^0}.\) Gọi \(D,\;E\) lần lượt là hình chiếu vuông góc của \(B,\;C\) lên \(AC,\;AB;\;H\) là giao điểm của \(BD\) và \(CE.\)

1) Chứng minh tứ giác \(BEDC\) nội tiếp.

2) Chứng minh \(DE.AB = BC.AD\) và tính tỉ số \(\dfrac{{ED}}{{BC}}.\)

3) Chứng minh \(HE + HD = BE + CD.\)

4) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Chứng minh \(AI \bot DE.\)

Câu 5. (1 điểm):

Cho \(n\) là số tự nhiên khác \(0.\) Tìm giá trị nhỏ nhất của:

 \(Q = \sqrt {1 + \dfrac{1}{{{1^2}}} + \dfrac{1}{{{2^2}}}} + \sqrt {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}}} \)\(\,+ \sqrt {1 + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{4^2}}}} + .....\)\(\, + \sqrt {1 + \dfrac{1}{{{n^2}}} + \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}} + \dfrac{{101}}{{n + 1}}.\)

Lời giải chi tiết

Câu 1.

1) Tìm \(x\) , biết \(2\sqrt x = 3.\)

Điều kiện: \(x \ge 0\)

\(2\sqrt x = 3 \Leftrightarrow \sqrt x = \dfrac{3}{2} \Leftrightarrow x = \dfrac{9}{4}\left( {tm} \right)\)

Vậy \(x = \dfrac{9}{4}\) .

2) Giải phương trình: \(43{x^2} - 2018x + 1975 = 0.\)

Ta có: \(a + b + c = 43 - 2018 + 1975 = 0\) . Nên phương trình luôn có 1 nghiệm là\(x = 1\) và nghiệm còn lại là \(x = \dfrac{c}{a} = \dfrac{{1975}}{{43}}\)

Vậy tập nghiệm của phương trình là: \(S = \left\{ {1;\dfrac{{1975}}{{43}}} \right\}\)

3) Cho hàm số \(y = \left( {a + 1} \right){x^2}.\) Tìm a để hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0.\)

+) Hàm số nghịch biến khi \(x < 0\) là: \(a + 1 > 0 \Leftrightarrow a > - 1\)

+) Hàm số đồng biến khi \(x > 0.\) là: \(a + 1 > 0 \Leftrightarrow a > - 1\)

Vậy với \(a > - 1\) thì hàm số nghịch biến khi \(x < 0\) và đồng biến khi \(x > 0.\)

Câu 2.

\({x^2} - 2\left( {m + 1} \right)x + {m^2} + 2 = 0\,\,\left( 1 \right),\)

1) Tìm m để \(x = 2\) là nghiệm của phương trình (1).

Thay \(x = 2\) vào phương trình (1) ta có: \({2^2} - 2\left( {m + 1} \right).2 + {m^2} + 2 = 0\,\, \)

\(\Leftrightarrow {m^2} - 4m + 2 = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}m = 2 - \sqrt 2 \\m = 2 + \sqrt 2 \end{array} \right.\)

Vậy với \(x = 2\) thì \(m \in \left\{ {2 - \sqrt 2 ;2 + \sqrt 2 } \right\}\)

2) Xác định m để phương trình (1) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện: \(x_1^2 + x_2^2 = 10\)

Phương trình có hai nghiệm phân biệt \({x_1},{x_2}\) khi và chỉ khi: \(\Delta ' > 0 \Leftrightarrow {\left( {m + 1} \right)^2} - {m^2} - 2 > 0\)

\(\Leftrightarrow {m^2} + 2m + 1 - {m^2} - 2 > 0\)

\(\Leftrightarrow m > \dfrac{1}{2}\)

Theo hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} + 2\end{array} \right.\)

Theo đề bài ta có:

\(\begin{array}{l}\;\;\;\;x_1^2 + x_2^2 = 10 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow 4{\left( {m + 1} \right)^2} - 2\left( {{m^2} + 2} \right) = 10\\ \Leftrightarrow 2\left( {{m^2} + 2m + 1} \right) - {m^2} - 2 = 5\\ \Leftrightarrow 2{m^2} + 4m + 2 - {m^2} - 2 - 5 = 0\\ \Leftrightarrow {m^2} + 4m - 5 = 0\\ \Leftrightarrow {m^2} + 5m - m - 5 = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {m + 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\left( {tm} \right)\\m = - 5\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy m = 1 thỏa mãn yêu cầu bài toán.

Câu 3:

1) Trong mặt phẳng tọa độ \(Oxy\) cho các đường thẳng có phương trình: \(\left( {{d_1}} \right):\;\;y = x + 2,\;\;\left( {{d_2}} \right):\;\;y = - 2\) và \(\;\left( {{d_3}} \right):\;\;y = \left( {k + 1} \right)x + k.\) Tìm \(k\) để các đường thẳng trên đồng quy.

Tọa độ giao điểm của đường thẳng \({d_1}\) và \({d_2}\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}y = x + 2\\y = - 2\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = - 2\end{array} \right. \Rightarrow A\left( { - 4;\; - 2} \right).\)

\( \Rightarrow \) Ba đường thẳng đã cho đồng quy khi đường thẳng \({d_3}\) phải đi qua điểm \(A\left( { - 4; - 2} \right) \Rightarrow - 2 = \left( {k + 1} \right)\left( { - 4} \right) + k\)

\( \Leftrightarrow - 2 = - 4k - 4 + k \)

\(\Leftrightarrow 3k = - 2 \Leftrightarrow k = - \dfrac{2}{3}.\)

Vậy \(k = - \dfrac{2}{3}.\)

2) Rút gọn và tìm giá trị lớn nhất của biểu thức:\(A = \left( {\dfrac{1}{{1 - \sqrt x }} + \dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{3}\) (với \(x \ge 0,\;\;x \ne 1\)).

\(\begin{array}{l}A = \left( {\dfrac{1}{{1 - \sqrt x }} + \dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{3}\\\;\;\; = \left( {\dfrac{{ - 1}}{{\sqrt x - 1}} + \dfrac{{x + 2}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}} \right).\dfrac{3}{{\sqrt x - 1}}\\\;\;\; = \dfrac{{ - \left( {x + \sqrt x + 1} \right) + x + 2 + \sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{3}{{\sqrt x - 1}}\\\;\;\; = \dfrac{{ - x - \sqrt x - 1 + x + 2 + x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{3}{{\sqrt x - 1}}\\\;\; = \dfrac{{x - 2\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{3}{{\sqrt x - 1}}\\\;\; = \dfrac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{3}{{\sqrt x - 1}} \\\;\;= \dfrac{3}{{x + \sqrt x + 1}}.\end{array}\)

Ta có: \(A = \dfrac{3}{{x + \sqrt x + 1}}\)

Ta có: \(x \ge 0,x \ne 1 \Rightarrow \sqrt x \ge 0 \)

\(\Rightarrow x + \sqrt x + 1 \ge 1 \)

\(\Rightarrow \dfrac{3}{{x + \sqrt x + 1}} \le 3\)

Vậy giá trị lớn nhất của biểu thức A là 3. Dấu “=” xảy ra khi và chỉ khi: \(x = 0\)

Câu 4:

Cho tam giác \(ABC\) có ba góc nhọn và \(\widehat {A\;} = {45^0}.\) Gọi \(D,\;E\) lần lượt là hình chiếu vuông góc của \(B,\;C\) lên \(AC,\;AB;\;H\) là giao điểm của \(BD\) và \(CE.\)

Đề số 26 - Đề thi vào lớp 10 môn Toán 1

1) Chứng minh tứ giác \(BEDC\) nội tiếp.

Xét tứ giác \(BEDC\) ta có: \(\widehat {BDC} = \widehat {BEC} = {90^0}\left( {gt} \right)\)

Mà hai đỉnh kề nhau D và E cùng nhìn cạnh \(BC\) dưới hai góc bằng nhau.

\( \Rightarrow BEDC\) là tứ giác nội tiếp. (dấu hiện nhận biết tứ giác nội tiếp).

2) Chứng minh \(DE.AB = BC.AD\) và tính tỉ số \(\dfrac{{ED}}{{BC}}.\)

Vì \(BEDC\) là tứ giác nội tiếp (cmt) \( \Rightarrow \widehat {ADE} = \widehat {ABC}\) (góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối diện).

Xét \(\Delta ADE\) và \(\Delta ABC\) ta có:

\(\begin{array}{l}\widehat {A\;}\;\;chung\\\widehat {ABC} = \widehat {ADE}\;\;\left( {cmt} \right)\\ \Rightarrow \Delta ADE \sim \Delta ABC\;\;\left( {g - g} \right).\\ \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{ED}}{{BC}} \\\Rightarrow AD.BC = AB.DE\;\;\left( {dpcm} \right).\end{array}\)

Xét \(\Delta ADB\) vuông tại \(D\) có \(\widehat {BAD} = {45^0} \Rightarrow \Delta ADB\) vuông cân tại \(D \Rightarrow AD = BD \)

\(\Rightarrow AB = AD\sqrt 2 .\)

\( \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{ED}}{{BC}} = \dfrac{{AD}}{{AD\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}.\)

Vậy \(\dfrac{{ED}}{{BC}} = \dfrac{{\sqrt 2 }}{2}.\)

3) Chứng minh \(HE + HD = BE + CD.\)

Ta có \(\Delta ADB\) vuông cân tại \(D \Rightarrow \widehat {ABD} = \widehat {BAD} = {45^0}.\)

\( \Rightarrow \Delta BEH\) vuông cân tại \(E\;\;\left( {do\;\;\widehat {BEH} = {{90}^0},\;\;\widehat {EBH} = {{45}^0}} \right) \)

\(\Rightarrow EH = BE\) (tính chất tam giác cân).

\(\Delta AEC\) vuông cân tại \(E\;\;\left( {do\;\;\widehat {EAC} = {{45}^0}} \right)\)

\(\Rightarrow \widehat {ACD} = {45^0}.\)

\( \Rightarrow \Delta HDC\) vuông cân tại \(H\;\left( {do\;\;\widehat {HDC} = {{90}^0},\;\;\widehat {DCH} = {{45}^0}} \right)\)

\(\Rightarrow HD = DC.\) (tính chất tam giác cân).

\( \Rightarrow BE + CD = HE + HD\;\;\left( {dpcm} \right).\)

4) Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Chứng minh \(AI \bot DE.\)

Kéo dài \(AI\) cắt đường tròn tại điểm thứ hai là \(F.\)

Giả sử \(AI \cap DE = \left\{ K \right\}.\)

Khi đó ta có: \(\widehat {ACF}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {ACF} = {90^0}.\)

Ta có: \(\widehat {ABD} = \widehat {AFC}\) (hai góc nội tiếp cùng chắn cung \(AC\))

Mà \(\widehat {ABC} = \widehat {ADE}\;\;\left( {cmt} \right)\)

\(\Rightarrow \widehat {ADE} = \widehat {AFC}\;\;\left( { = \widehat {ADE}} \right).\)

Xét tứ giác \(DKFC\) ta có: \(\widehat {ADK} = \widehat {KFC}\;\;\left( {cmt} \right).\)

\( \Rightarrow DKFC\) là tứ giác nội tiếp (góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối diện).

\( \Rightarrow \widehat {DCF} + \widehat {DKF} = {180^0}\)

\(\Leftrightarrow \widehat {DKF} = {180^0} - \widehat {DCF} = {90^0}\) (tổng hai góc đối diện trong tứ giác nội tiếp)

Hay \(AI \bot DE\;\;\left( {dpcm} \right).\)

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề số 26 - Đề thi vào lớp 10 môn Toán đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Bài viết liên quan

Đề số 26 - Đề thi vào lớp 10 môn Toán: Phân tích chi tiết và hướng dẫn giải

Đề thi vào lớp 10 môn Toán là một bước ngoặt quan trọng trong quá trình học tập của học sinh. Việc làm quen với các dạng bài tập và rèn luyện kỹ năng giải quyết vấn đề là vô cùng cần thiết. Đề số 26 là một đề thi thử điển hình, bao gồm nhiều dạng bài tập khác nhau, từ đại số đến hình học, đòi hỏi học sinh phải có kiến thức vững chắc và khả năng vận dụng linh hoạt.

Cấu trúc đề thi Đề số 26

Đề thi Đề số 26 thường bao gồm các phần sau:

  • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng nhận biết vấn đề.
  • Phần tự luận: Đòi hỏi học sinh phải trình bày lời giải chi tiết và chứng minh các kết quả.

Các dạng bài tập thường gặp trong Đề số 26

  1. Đại số: Giải phương trình, hệ phương trình, bất phương trình, bài toán về hàm số, phương trình bậc hai.
  2. Hình học: Chứng minh các tính chất hình học, tính diện tích, thể tích, giải bài toán về tam giác, đường tròn, hình hộp chữ nhật.
  3. Bài toán thực tế: Ứng dụng kiến thức toán học vào giải quyết các vấn đề thực tế.

Hướng dẫn giải chi tiết một số bài tập trong Đề số 26

Bài 1: Giải phương trình bậc hai

Phương trình bậc hai có dạng ax2 + bx + c = 0. Để giải phương trình này, ta có thể sử dụng công thức nghiệm hoặc phương pháp phân tích thành nhân tử. Ví dụ, với phương trình x2 - 5x + 6 = 0, ta có thể phân tích thành (x - 2)(x - 3) = 0, suy ra x = 2 hoặc x = 3.

Bài 2: Chứng minh tam giác đồng dạng

Để chứng minh hai tam giác đồng dạng, ta có thể sử dụng các trường hợp đồng dạng sau:

  • Trường hợp 1: Hai tam giác có hai góc bằng nhau.
  • Trường hợp 2: Hai tam giác có hai cạnh tỷ lệ và góc xen giữa hai cạnh đó bằng nhau.
  • Trường hợp 3: Hai tam giác có ba cạnh tỷ lệ.

Ví dụ, nếu tam giác ABC và tam giác A'B'C' có góc A bằng góc A', góc B bằng góc B', thì hai tam giác này đồng dạng.

Bài 3: Tính diện tích hình tròn

Diện tích hình tròn được tính theo công thức S = πr2, trong đó r là bán kính của hình tròn. Ví dụ, nếu bán kính của hình tròn là 5cm, thì diện tích của hình tròn là S = π(52) = 25π cm2.

Lời khuyên khi làm bài thi vào lớp 10 môn Toán

  • Nắm vững kiến thức cơ bản: Đây là nền tảng quan trọng để giải quyết các bài tập.
  • Luyện tập thường xuyên: Giải nhiều đề thi thử để làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
  • Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
  • Trình bày lời giải rõ ràng: Trình bày lời giải một cách logic và dễ hiểu.
  • Kiểm tra lại bài làm: Sau khi làm xong bài, hãy kiểm tra lại để đảm bảo không có sai sót.

Tài liệu ôn thi vào lớp 10 môn Toán tại giaitoan.edu.vn

Giaitoan.edu.vn cung cấp đầy đủ các tài liệu ôn thi vào lớp 10 môn Toán, bao gồm:

  • Các đề thi thử vào lớp 10: Được cập nhật thường xuyên với nhiều độ khó khác nhau.
  • Bài giảng lý thuyết: Trình bày kiến thức một cách dễ hiểu và hệ thống.
  • Bài tập luyện tập: Giúp học sinh rèn luyện kỹ năng giải toán.
  • Đáp án và lời giải chi tiết: Giúp học sinh tự học và kiểm tra kiến thức.

Kết luận

Đề số 26 - Đề thi vào lớp 10 môn Toán là một đề thi thử hữu ích giúp học sinh chuẩn bị cho kỳ thi sắp tới. Bằng cách nắm vững kiến thức, luyện tập thường xuyên và áp dụng các lời khuyên trên, bạn có thể tự tin đạt kết quả tốt nhất trong kỳ thi vào lớp 10.

Tài liệu, đề thi và đáp án Toán 9