Chào mừng bạn đến với bài viết phân tích và giải chi tiết Đề số 28 - Đề thi vào lớp 10 môn Toán tại giaitoan.edu.vn. Đây là một trong những đề thi thử quan trọng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, cùng với các phương pháp giải nhanh và hiệu quả, giúp bạn tự tin đối mặt với kỳ thi sắp tới.
Đề thi vào lớp 10 môn Toán - Đề số 28 có đáp án và lời giải chi tiết
Đề bài
Câu 1 (2 điểm):
Giải phương trình và hệ phương trình:
\(1)\;\;\dfrac{{3x + 1}}{2} - x = 1\)
\(2)\;\;\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right.\)
Câu 2 (2 điểm):
1) Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)
2) Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)
Câu 3 (2 điểm):
1) Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.
2) Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)
Câu 4 (3 điểm):
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ AH vuông góc với BC (H thuộc BC), gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC.
1) Chứng minh \(A{C^2} = CH.CB.\)
2) Chứng minh tứ giác \(BCNM\) nội tiếp và \(AC.BM + AB.CN = AH.BC.\)
3) Đường thẳng đi qua A cắt tia HM tại E và cắt tia đối của tia NH tại F. Chứng minh BE // CF.
Câu 5 (1 điểm):
Cho phương trình \(a{x^2} + bx + c = 0\;\;\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn \(0 \le {x_1} \le {x_2} \le 2.\) Tìm giá trị nhỏ nhất của biểu thức \(L = \dfrac{{3{a^2} - ab + ac}}{{5{a^2} - 3ab + {b^2}}}.\)
Lời giải chi tiết
Câu 1:
\(\begin{array}{l}1)\;\;\dfrac{{3x + 1}}{2} - x = 1\\ \Leftrightarrow 3x + 1 - 2x = 2\\ \Leftrightarrow x = 1.\end{array}\)
Vậy phương trình có nghiệm duy nhất: \(x = 1.\)
\(\begin{array}{l}2)\;\;\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + y = 17\\x - 2y = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}3x + y = 17\\3x - 6y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7y = 14\\x = 2y + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x = 2.2. + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 2\end{array} \right..\end{array}\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\;y} \right) = \left( {5;\;2} \right).\)
Câu 2:
1) Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)
Phương trình hoành độ giao điểm của hai đường thẳng đã cho là:
\(\left( {{m^2} + 1} \right)x + 2m - 3 = x - 3 \Leftrightarrow {m^2}x + 2m = 0.\;\;\;\;\left( * \right)\)
Hai đường thẳng cắt nhau tại điểm \(A\) có hoành độ bằng \( - 1\) thì \(x = - 1\) là nghiệm của phương trình (*). Khi đó:
\(\begin{array}{l}\left( * \right) \Leftrightarrow - {m^2} + 2m = 0\\ \Leftrightarrow m\left( {m - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m - 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 2\end{array} \right..\end{array}\)
Vậy \(m = 0\) hoặc \(m = 2.\)
2) Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)
Điều kiện: \(x > 0,\;\;x \ne 1.\)
\(\begin{array}{l}A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\\\;\;\; = \left( {\dfrac{1}{{\sqrt x \left( {\sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{{{\left( {\sqrt x + 1} \right)}^2}}} + 1\\\;\;\; = \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 1} \right)}}.\dfrac{{{{\left( {\sqrt x + 1} \right)}^2}}}{{\sqrt x - 1}} + 1\\\;\;\; = - \dfrac{{\sqrt x + 1}}{{\sqrt x }} + 1\\\;\;\; = \dfrac{{ - \sqrt x - 1 + \sqrt x }}{{\sqrt x }} = - \dfrac{1}{{\sqrt x }}.\end{array}\)
Câu 3:
1) Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.
Gọi vận tốc của ô tô lúc đi là \(x\;\left( {km/h} \right),\;\;\left( {x > 0} \right).\)
Khi đó vận tốc lúc về của ô tô là: \(x + 10\;\;\left( {km/h} \right).\)
Thời gian ô tô đi từ Hải Dương đến Hạ Long là: \(\dfrac{{100}}{x}\;\;\left( h \right).\)
Thời gian ô tô đi từ Hạ Long về Hải Dương là: \(\dfrac{{100}}{{x + 10}}\;\;\left( h \right).\)
Đổi \(8\) giờ \(20\) phút \( = \dfrac{{25}}{3}\) giờ.
Theo đề bài ta có phương trình:
\(\begin{array}{l}\;\;\;\;\dfrac{{100}}{x} + \dfrac{{25}}{3} + \dfrac{{100}}{{x + 10}} = 12\\ \Leftrightarrow \dfrac{{100}}{x} + \dfrac{{100}}{{x + 10}} - \dfrac{{11}}{3} = 0\\ \Leftrightarrow 300\left( {x + 10} \right) + 300x - 11x\left( {x + 10} \right) = 0\\ \Leftrightarrow 600x + 3000 - 11{x^2} - 110x = 0\\ \Leftrightarrow 11{x^2} - 490x - 3000 = 0\\ \Leftrightarrow \left( {x - 50} \right)\left( {11x + 60} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 50 = 0\\11x + 60 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 50\;\;\left( {tm} \right)\\x = - \dfrac{{60}}{{11}}\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
Vậy vận tốc của ô tô lúc đi là \(50\;km/h.\)
2) Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)
Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - {m^2} + 2 > 0\; \)\(\Leftrightarrow 2 > 0\;\forall m\)
\( \Rightarrow \) Phương trình luôn có hai nghiệm \({x_1},\;\;{x_2}\) với mọi \(m.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = {m^2} - 2\end{array} \right..\)
Theo đề bài ta có: \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 \)
\(\begin{array}{l} \Leftrightarrow \left| {\left( {{x_1} - {x_2}} \right)\left( {x_1^2 + {x_1}{x_2} + x_2^2} \right)} \right| = 10\sqrt 2 \\ \Leftrightarrow \left| {\left( {{x_1} - {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]} \right| = 10\sqrt 2 \\ \Leftrightarrow {\left| {\left( {{x_1} - {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]} \right|^2} = 200\\ \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2}{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]^2} = 200\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]^2} = 200\\ \Leftrightarrow \left[ {4{m^2} - 4\left( {{m^2} - 2} \right)} \right]{\left[ {4{m^2} - {m^2} + 2} \right]^2} = 200\\ \Leftrightarrow 8{\left( {3{m^2} + 2} \right)^2} = 200\\ \Leftrightarrow {\left( {3{m^2} + 2} \right)^2} = 25\\ \Leftrightarrow 3{m^2} + 2 = 5\;\;\;\left( {do\;\;3{m^2} + 2 > 0\;\;\forall m} \right)\\ \Leftrightarrow {m^2} = 1\\ \Leftrightarrow m = \pm 1.\end{array}\)
Vậy \(m = \pm 1\) thỏa mãn bài toán.
Câu 4:
Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ AH vuông góc với BC (H thuộc BC), gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC.
1) Chứng minh \(A{C^2} = CH.CB.\)
Xét đường tròn ngoại tiếp tam giác ABC có đường kính BC ta có:
\(\widehat {BAC}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {BAC} = {90^0} \Rightarrow \) \(\Delta ABC\) vuông tại \(A.\)
Xét tam giác \(ABC\) có đường cao ta có:
\(A{C^2} = CH.CB\) (hệ thức lượng trong tam giác vuông). (đpcm)
2) Chứng minh tứ giác \(BCNM\) nội tiếp và \(AC.BM + AB.CN = AH.BC.\)
+) Ta có \(ANHM\) là hình chữ nhật do có 3 góc vuông.
\( \Rightarrow AN//MH,\;\;AM//HN.\)
\( \Rightarrow \widehat {MAH} = \widehat {AMN}\) (tính chất).
Lại có
Xét tứ giác \(BCNM\) ta có: \(\widehat {MBC} = \widehat {ANM}\;\;\left( {cmt} \right)\)
\( \Rightarrow BMNC\) là tứ giác nội tiếp (góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối diện).
+) Xét \(\Delta BMH\) và \(\Delta AHC\) ta có:
\(\widehat {MBH} = \widehat {HAC}\;\;\)(cùng phụ với \(\widehat {ACH}\))
\(\begin{array}{l}\widehat {BMH} = \widehat {AHC} = {90^0}\\ \Rightarrow \Delta BMH \sim \Delta AHC\;\;\left( {g - g} \right)\\ \Rightarrow \dfrac{{BM}}{{AH}} = \dfrac{{BH}}{{AC}} \\\Leftrightarrow AC.BM = AH.BH.\end{array}\)
Xét \(\Delta CNH\) và \(\Delta BAH\) ta có:
\(\widehat {NCH} = \widehat {BAH}\) (cùng phụ với \(\widehat {ABH}\))
\(\begin{array}{l}\widehat {CNH} = \widehat {AHB} = {90^0}\\ \Rightarrow \Delta CNH \sim \Delta AHB\left( {g - g} \right)\\ \Rightarrow \dfrac{{CN}}{{AH}} = \dfrac{{CH}}{{AB}}\\ \Rightarrow AB.CN = AH.CH.\end{array}\)
\(\Rightarrow AC.BM + AB.CN = AH.BH + AH.CH \)\(\,= AH\left( {BH.CH} \right) = AH.BC\;\;\left( {dpcm} \right)\)
3) Đường thẳng đi qua A cắt tia HM tại E và cắt tia đối của tia NH tại F. Chứng minh BE // CF.
Ta có :
\(\Delta ANF \sim \Delta EMA\left( {g - g} \right)\)
\( \Rightarrow \dfrac{{AN}}{{ME}} = \dfrac{{NF}}{{AM}} \)\(\;\Rightarrow AN.AM = NF.ME\,\,\left( 1 \right)\)
Lại có : \(\begin{array}{l}\Delta BMH \sim \Delta HNC\left( {g - g} \right)\\ \Rightarrow \dfrac{{BM}}{{HN}} = \dfrac{{MH}}{{NC}} \\\Rightarrow BM.NC = MH.HN\,\,\left( 2 \right)\end{array}\)
Mặt khác \(AM.AN = MH.NH\,\,\left( {AM = NH;AN = MH} \right)\,\,\,\left( 3 \right)\)
Từ (1) , (2), (3) suy ra \(NF.ME = BM.NC \Rightarrow \dfrac{{NF}}{{NC}} = \dfrac{{BM}}{{ME}}\) \( \Rightarrow \dfrac{{ME}}{{NC}} = \dfrac{{BM}}{{NF}}\)
Mà \(\widehat {BME} = \widehat {CNF} = {90^0}\)
Suy ra \(\Delta BME \sim \Delta FNC\left( {c - g - c} \right) \) \(\Rightarrow \widehat {CFN} = \widehat {EBM}\)
Ta lại có \(\widehat {NFA} = \widehat {MEA}\left( {Do\,\,AB\parallel HF} \right)\)
Nên ta có : \(\begin{array}{l}\widehat {CFE} + \widehat {BEF} = \widehat {CFN} + \widehat {NFA} + \widehat {BEF} = \widehat {EBM} + \widehat {MAE} + \widehat {BEF}\\ \Rightarrow \widehat {CFE} + \widehat {BEF} = \widehat {EBA} + \widehat {BAE} + \widehat {BEF} = {180^0}\end{array}\)
(Theo định lý tổng ba góc trong tam giác EBA).
Vậy BE//CF
Câu 5:
Phương trình có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn \(0 \le {x_1} \le {x_2} \le 2\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta \ge 0\\af\left( 0 \right) \ge 0\\af\left( 2 \right) \ge 0\\\dfrac{S}{2} > 0\\\dfrac{S}{2} < 2\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{b^2} - 4ac > 0\\ac \ge 0\\a\left( {4a + 2b + c} \right) \ge 0\\ - \dfrac{b}{{2a}} > 0\\ - \dfrac{b}{{2a}} < 2\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{b^2} \ge 4ac\\ac \ge 0\\a\left( {4a + 2b + c} \right) \ge 0\\\dfrac{b}{{2a}} < 0\\\dfrac{{4a + b}}{{2a}} > 0\end{array} \right..\)
Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right..\)
Theo đề bài ta có:
\(\begin{array}{l}L = \dfrac{{3{a^2} - ab + ac}}{{5{a^2} - 3ab + {b^2}}} \\\;\;= \dfrac{{3 - \dfrac{b}{a} + \dfrac{c}{a}}}{{5 - 3.\dfrac{b}{a} + {{\left( {\dfrac{b}{a}} \right)}^2}}}\;\;\left( {do\;\;a \ne 0} \right)\\\;\; = \dfrac{{3 + \left( {{x_1} + {x_2}} \right) + {x_1}{x_2}}}{{5 + 3\left( {{x_1} + {x_2}} \right) + {{\left( {{x_1} + {x_2}} \right)}^2}}}\;\;\;\left( {L > 0\;\;\forall \;0 \le {x_1} \le {x_2} \le 2} \right)\\\;\; = \dfrac{{3 + {x_1} + {x_2} + {x_1}{x_2}}}{{5 + 3{x_1} + 3{x_2} + x_1^2 + x_2^2 + 2{x_1}{x_2}}}.\\ \Rightarrow \dfrac{1}{L} = \dfrac{{5 + 3{x_1} + 3{x_2} + x_1^2 + x_2^2 + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}.\end{array}\)
Vì \(0 \le {x_1} \le {x_2} \le 2 \Rightarrow \left\{ \begin{array}{l}x_1^2 \le 2{x_1}\\x_2^2 \le 2{x_2}\\{x_1} - 2 \le 0\\{x_2} - 2 \le 0\end{array} \right. \) \(\Rightarrow \left\{ \begin{array}{l}x_1^2 + x_2^2 \le 2{x_1} + 2{x_2}\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right..\)
\(\begin{array}{l} \Rightarrow \dfrac{1}{L} \le \dfrac{{5 + 3{x_1} + 3{x_2} + 2{x_1} + 2{x_2} + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{5 + 5{x_1} + 5{x_2} + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{3{x_1}{x_2} + 3{x_1} + 3{x_2} + 9 - {x_1}{x_2} + 2{x_1} + 2{x_2} - 4}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{3\left( {3 + {x_1} + {x_2} + {x_1}{x_2}} \right) - \left( {{x_2} - 2} \right){x_1} + 2\left( {{x_2} - 2} \right)}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = 3 - \dfrac{{\left( {{x_2} - 2} \right)\left( {{x_1} - 2} \right)}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}} \le 3\;\;\;\left( {do\;\;\left( {{x_2} - 2} \right)\left( {{x_1} - 2} \right) \ge 0} \right)\\ \Rightarrow 0 \le \dfrac{1}{L} \le 3 \Leftrightarrow 3L \ge 1 \Leftrightarrow L \ge \dfrac{1}{3}\\ \Rightarrow Min\;L = \dfrac{1}{3}.\end{array}\)
Dấu “=” xảy ra
\( \Leftrightarrow \left\{ \begin{array}{l}x_1^2 = 2{x_1}\\x_2^2 = 2{x_2}\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{x_1}\left( {{x_1} - 2} \right) = 0\\{x_2}\left( {{x_2} - 2} \right) = 0\\\left[ \begin{array}{l}{x_1} - 2 = 0\\{x_2} - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_1} = 0\\{x_1} = 2\end{array} \right.\\\left[ \begin{array}{l}{x_2} = 0\\{x_2} = 2\end{array} \right.\\\left[ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x_1} = 0\\{x_2} = 2\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 2\\{x_2} = 0\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right..\)
Vậy \(Min\;L = \dfrac{1}{3}\) khi \(\left( {{x_1};\;{x_2}} \right) = \left\{ {\left( {0;\;2} \right),\;\left( {2;\;0} \right),\;\left( {2;\;2} \right)} \right\}.\)
Đề thi vào lớp 10 môn Toán là một kỳ thi quan trọng đánh giá năng lực học tập của học sinh sau nhiều năm học tập ở bậc THCS. Việc làm quen với các dạng đề thi khác nhau, đặc biệt là các đề thi thử, là một bước chuẩn bị thiết yếu để đạt kết quả tốt nhất.
Đề thi vào lớp 10 môn Toán thường bao gồm các dạng bài tập sau:
Đề số 28 bao gồm các câu hỏi thuộc nhiều lĩnh vực khác nhau của chương trình Toán lớp 9. Đề thi có độ khó vừa phải, tập trung vào các kiến thức cơ bản và nâng cao. Việc giải đề thi này đòi hỏi học sinh phải nắm vững kiến thức, kỹ năng giải toán và khả năng tư duy logic.
Dưới đây là lời giải chi tiết cho từng câu hỏi trong Đề số 28:
Giải phương trình: 2x + 3 = 7
Lời giải: 2x = 7 - 3 => 2x = 4 => x = 2
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài BC.
Lời giải: Áp dụng định lý Pitago trong tam giác ABC vuông tại A, ta có: BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25 => BC = 5cm
Tìm ước chung lớn nhất của 12 và 18.
Lời giải: ƯCLN(12, 18) = 6
Để đạt kết quả tốt trong kỳ thi vào lớp 10 môn Toán, bạn có thể áp dụng một số mẹo sau:
Có rất nhiều tài liệu ôn thi vào lớp 10 môn Toán hữu ích mà bạn có thể tham khảo, bao gồm:
Đề số 28 - Đề thi vào lớp 10 môn Toán là một đề thi thử hữu ích giúp học sinh chuẩn bị tốt nhất cho kỳ thi sắp tới. Hãy luyện tập chăm chỉ, nắm vững kiến thức và áp dụng các mẹo giải toán hiệu quả để đạt kết quả tốt nhất.
Chúc các bạn thành công!