Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Đắk Lắk năm 2021

Đề thi vào 10 môn Toán Đắk Lắk năm 2021

Đề thi vào 10 môn Toán Đắk Lắk năm 2021: Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Đắk Lắk năm 2021 chính thức, kèm đáp án chi tiết. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Chúng tôi đã tổng hợp đầy đủ các đề thi, đáp án và phân tích chi tiết để hỗ trợ tối đa quá trình ôn tập của các em. Hãy cùng Giaitoan.edu.vn chinh phục kỳ thi vào 10 môn Toán một cách hiệu quả nhất!

Câu 1 (1,5 điểm) 1) Giải phương trình:

Đề bài

    Câu 1 (1,5 điểm)

    1) Giải phương trình: \(2{x^2} + 5x - 3 = 0.\)

    2) Cho hàm số \(y = \left( {m - 1} \right)x + 2021.\) Tìm tất cả các giá trị của tham số m để đồ thị hàm số đồng biến trên \(\mathbb{R}\).

    3) Cho \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \). Tính giá trị của biểu thức \(P = a + b - 2ab.\)

    Câu 2 (2,0 điểm):

    Cho biểu thức: \(P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\) với \(x \ge 0,x \ne 4,x \ne 9\)

    1) Rút gọn biểu thức \(P\)

    2) Tìm tất cả các giá trị của \(x\) để \(P > 1\)

    Câu 3 (2,0 điểm):

    1) Trong mặt phẳng tọa độ \(Oxy\), viết phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\)song song với đường thẳng \(y = 2x - 1\).

    2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2\left( {m - 1} \right)x - m + 3\). Gọi \({x_1},{x_2}\) lần lượt là hoành độ giao điểm của đường thẳng \(\left( d \right)\) và Parabol \(\left( P \right)\). Tìm giá trị nhỏ nhất của biểu thức \(M = x_1^2 + x_2^2\).

    Câu 4 (3,5 điểm):

    Trên nửa đường tròn tâm \(O\)đường kính \(AB\) với \(AB = 2022\), lấy điểm \(C\) (\(C\) khác \(A\) và \(B\)) từ \(C\) kẻ \(CH\) vuông góc với \(AB\)\(\left( {H \in AB} \right)\). Gọi \(D\) là điểm bất kì trên đoạn \(CH\)(\(D\) khác \(C,H\)), đường thẳng \(AD\) cắt nửa đường tròn tại điểm thứ hai \(E\).

    1) Chứng minh \(BHDE\) nội tiếp.

    2) Chứng minh \(AD.EC = CD.AC\)

    3) Chứng minh \(AD.AE + BH.BA = {2022^2}\)

    4) Khi điểm \(C\) di động trên nửa đường tròn \(C\) khác \(A,\,B\) và điểm chính giữa cung \(AB\), xác định vị trí điểm \(C\) sao cho chu vi tam giác \(COH\) đạt giá trị lớn nhất.

    Câu 5 (1,0 điểm):

    Cho \(a \ge 1348,\,\,b \ge 1348\). Chứng minh \({a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\).

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải chi tiết
    • Tải về

    Câu 1 (1,5 điểm)

    1) Giải phương trình: \(2{x^2} + 5x - 3 = 0.\)

    2) Cho hàm số \(y = \left( {m - 1} \right)x + 2021.\) Tìm tất cả các giá trị của tham số m để đồ thị hàm số đồng biến trên \(\mathbb{R}\).

    3) Cho \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \). Tính giá trị của biểu thức \(P = a + b - 2ab.\)

    Câu 2 (2,0 điểm):

    Cho biểu thức: \(P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\) với \(x \ge 0,x \ne 4,x \ne 9\)

    1) Rút gọn biểu thức \(P\)

    2) Tìm tất cả các giá trị của \(x\) để \(P > 1\)

    Câu 3 (2,0 điểm):

    1) Trong mặt phẳng tọa độ \(Oxy\), viết phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\)song song với đường thẳng \(y = 2x - 1\).

    2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2\left( {m - 1} \right)x - m + 3\). Gọi \({x_1},{x_2}\) lần lượt là hoành độ giao điểm của đường thẳng \(\left( d \right)\) và Parabol \(\left( P \right)\). Tìm giá trị nhỏ nhất của biểu thức \(M = x_1^2 + x_2^2\).

    Câu 4 (3,5 điểm):

    Trên nửa đường tròn tâm \(O\)đường kính \(AB\) với \(AB = 2022\), lấy điểm \(C\) (\(C\) khác \(A\) và \(B\)) từ \(C\) kẻ \(CH\) vuông góc với \(AB\)\(\left( {H \in AB} \right)\). Gọi \(D\) là điểm bất kì trên đoạn \(CH\)(\(D\) khác \(C,H\)), đường thẳng \(AD\) cắt nửa đường tròn tại điểm thứ hai \(E\).

    1) Chứng minh \(BHDE\) nội tiếp.

    2) Chứng minh \(AD.EC = CD.AC\)

    3) Chứng minh \(AD.AE + BH.BA = {2022^2}\)

    4) Khi điểm \(C\) di động trên nửa đường tròn \(C\) khác \(A,\,B\) và điểm chính giữa cung \(AB\), xác định vị trí điểm \(C\) sao cho chu vi tam giác \(COH\) đạt giá trị lớn nhất.

    Câu 5 (1,0 điểm):

    Cho \(a \ge 1348,\,\,b \ge 1348\). Chứng minh \({a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\).

    Câu 1 (1,5 điểm)

    1) Giải phương trình: \(2{x^2} + 5x - 3 = 0.\)

    2) Cho hàm số \(y = \left( {m - 1} \right)x + 2021.\) Tìm tất cả các giá trị của tham số m để đồ thị hàm số đồng biến trên \(\mathbb{R}\).

    3) Cho \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \). Tính giá trị của biểu thức \(P = a + b - 2ab.\)

    Phương pháp:

    1) Tính \(\Delta = {b^2} - 4ac\) (hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\)), sử dụng công thức nghiệm của phương trình bậc hai một ẩn: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta }}{{2a}}\) (hoặc \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}\)), tính được nghiệm của phương trình, kết luận.

    2) Hàm số \(y = ax + b\) đồng biến trên \(\mathbb{R} \Leftrightarrow a > 0\)

    3) Thay \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \) vào \(P\), sau đó tính toán.

    Cách giải:

    1) Xét phương trình \(2{x^2} + 5x - 3 = 0\)

    Ta có: \(\Delta = {5^2} + 24 = 49 > 0\)

    \( \Rightarrow \) Phương trình có hai nghiệm: \({x_1} = \dfrac{{ - 5 + \sqrt {49} }}{4} = \dfrac{1}{2}\); \({x_2} = \dfrac{{ - 5 - \sqrt {49} }}{4} = - 3\)

    Vậy phương trình có tập nghiệm: \(S = \left\{ { - 3;\,\,\dfrac{1}{2}} \right\}\).

    2) Hàm số \(y = \left( {m - 1} \right)x + 2021\) đồng biến trên \(\mathbb{R}\) khi và chỉ khi: \(m - 1 > 0 \Leftrightarrow m > 1\)

    Vậy với \(m > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).

    3) Thay \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \) vào \(P = a + b - 2ab\) ta được:

    \(\begin{array}{l}P = 1 + \sqrt 2 + 1 - \sqrt 2 - 2\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right)\\\,\,\,\, = 2 - 2\left[ {1 - {{\left( {\sqrt 2 } \right)}^2}} \right]\\\,\,\, = 2 - 2\left( {1 - 2} \right)\\\,\,\, = 2 + 2 = 4.\end{array}\)

    Vậy \(P = 4\) khi \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 .\)

    Câu 2 (2,0 điểm):

    Cho biểu thức: \(P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\) với \(x \ge 0,x \ne 4,x \ne 9\)

    1) Rút gọn biểu thức \(P\)

    2) Tìm tất cả các giá trị của \(x\) để \(P > 1\)

    Phương pháp:

    1) Xác định mẫu thức chung của biểu thức

    Quy đồng các phân thức, thực hiện các phép toán từ đó rút gọn được biểu thức.

    2) Vì \(P > 1 \Leftrightarrow P - 1 > 0\)

    Rút gọn \(P - 1\)

    \(\dfrac{{f\left( x \right)}}{{g\left( x \right)}} > 0\) khi \(f\left( x \right)\) và \(g\left( x \right)\) cùng âm hoặc dương.

    Cách giải:

    1) ĐKXĐ: \(x \ge 0,x \ne 4,x \ne 9\)

    \(\begin{array}{l}P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - \left( {x - 9} \right) + \left( {2x - 3\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\, = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\end{array}\)

    Vậy với \(x \ge 0,\,\,x \ne 4,\,\,x \ne 9\) ta có \(B = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}.\)

    b) Điều kiện: \(x \ge 0,\,\,x \ne 4,\,\,x \ne 9\)

    \(\begin{array}{l}P > 1 \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} > 1\\ \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - 1 > 0\\ \Leftrightarrow \dfrac{{\sqrt x + 1 - \left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}} > 0\\ \Leftrightarrow \dfrac{4}{{\sqrt x - 3}} > 0\\ \Leftrightarrow \sqrt x - 3 > 0\,\,\,\left( {do\,\,\,4 > 0} \right)\\ \Leftrightarrow \sqrt x > 3\\ \Leftrightarrow x > 9\end{array}\)

    Kết hợp với điều kiện xác định ta được \(x > 9\) thì \(P > 1\)

    Vậy \(x > 9\) thì \(P > 1.\)

    Câu 3 (2,0 điểm):

    1) Trong mặt phẳng tọa độ \(Oxy\), viết phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\)song song với đường thẳng \(y = 2x - 1\).

    2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2\left( {m - 1} \right)x - m + 3\). Gọi \({x_1},{x_2}\) lần lượt là hoành độ giao điểm của đường thẳng \(\left( d \right)\) và Parabol \(\left( P \right)\). Tìm giá trị nhỏ nhất của biểu thức \(M = x_1^2 + x_2^2\).

    Phương pháp:

    1) Viết phương trình đường thẳng \(\Delta \) biết \(\Delta \) đi qua điểm \(A\left( {{x_A};{y_A}} \right)\) và song song với \(d:y = a'x + b'\) (\(a';b'\) đã biết)

    Gọi phương trình đường thẳng\(\Delta \) là \(y = ax + b\,\,\,\left( {a \ne 0} \right)\)

    Vì \(\Delta //d \Rightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\)

    \( \Rightarrow d:y = a'x + b\)

    \(\Delta \) đi qua điểm \(A\left( {{x_A};{y_A}} \right)\), từ đó tìm được \(b\), đối chiếu điều kiện ở trên

    Kết luận phương trình đường thẳng cần tìm.

    2) Xét phương trình hoành độ giao điểm giữa \(\left( P \right)\) và \(\left( d \right)\) \(\left( 1 \right)\)

    Để \(\left( P \right)\) cắt \(\left( d \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\).

    \( \Leftrightarrow \Delta > 0\)

    Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)

    Thay vào \(M = x_1^2 + x_2^2\), vận dụng hằng đẳng thức tìm được giá trị nhỏ nhất của \(M\)

    Cách giải:

    1) Gọi phương trình đường thẳng\(\Delta \) là \(y = ax + b\,\,\,\left( {a \ne 0} \right)\)

    Vì \(\Delta \) song song với đường thẳng \(y = 2x - 1\) nên \(\left\{ \begin{array}{l}a = 2\\b \ne - 1\end{array} \right.\).

    Vì \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\) nên ta có: \( - 2 = a + b\).

    Thay \(a = 2\) vào ta được: \( - 2 = 2 + b \Leftrightarrow b = - 4\,\,\,\left( {tm} \right)\).

    Vậy đường thẳng \(\Delta \)cần tìm có phương trình là \(y = 2x - 4\).

    2) Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình:

    \({x^2} = 2\left( {m - 1} \right)x - m + 3 \Leftrightarrow {x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\,\,\left( * \right)\)

    Phương trình (*) có:

    \(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - \left( {m - 3} \right) = {m^2} - 2m + 1 - m + 3\\\,\,\,\,\,\, = {m^2} - 3m + 4 = {\left( {m - \dfrac{3}{2}} \right)^2} + \dfrac{7}{4} > 0\,\,\,\,\forall m \in \mathbb{R}\end{array}\)

    \( \Rightarrow \) Phương trình (*) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m\).

    \( \Rightarrow \) \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) với mọi \(m\).

    Áp dụng định lí Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = m - 3\end{array} \right.\)

    Khi đó ta có:

    \(\begin{array}{l}\,\,\,\,\,\,M = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\\ \Leftrightarrow M = {\left[ {2\left( {m - 1} \right)} \right]^2} - 2.\left( {m - 3} \right)\\ \Leftrightarrow M = 4{m^2} - 8m + 4 - 2m + 6\\ \Leftrightarrow M = 4{m^2} - 10m + 10\\ \Leftrightarrow M = {\left( {2m} \right)^2} - 2.2m.\dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} + \dfrac{{15}}{4}\end{array}\)

    \( \Leftrightarrow M = {\left( {2m - \dfrac{5}{2}} \right)^2} + \dfrac{{15}}{4} \ge \dfrac{{15}}{4}\,\,\forall m\) (Vì \({\left( {2m - \dfrac{5}{2}} \right)^2} \ge 0\,\,\forall m\))

    Vậy \({M_{\min }} = \dfrac{{15}}{4}\). Dấu “=” xảy ra khi và chỉ khi \(2m = \dfrac{5}{2} \Leftrightarrow m = \dfrac{5}{4}\).

    Câu 4 (3,5 điểm):

    Trên nửa đường tròn tâm \(O\)đường kính \(AB\) với \(AB = 2022\), lấy điểm \(C\) (\(C\) khác \(A\) và \(B\)) từ \(C\) kẻ \(CH\) vuông góc với \(AB\)\(\left( {H \in AB} \right)\). Gọi \(D\) là điểm bất kì trên đoạn \(CH\)(\(D\) khác \(C,H\)), đường thẳng \(AD\) cắt nửa đường tròn tại điểm thứ hai \(E\).

    1) Chứng minh \(BHDE\) nội tiếp.

    2) Chứng minh \(AD.EC = CD.AC\)

    3) Chứng minh \(AD.AE + BH.BA = {2022^2}\)

    4) Khi điểm \(C\) di động trên nửa đường tròn \(C\) khác \(A,\,B\) và điểm chính giữa cung \(AB\), xác định vị trí điểm \(C\) sao cho chu vi tam giác \(COH\) đạt giá trị lớn nhất.

    Phương pháp:

    1) Vận dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

    2) Ta sẽ chứng minh:

    3) Ta sẽ chứng minh:

    Ta có: \(AD.AE + BH.AB = AH.AB + BH.AB = \left( {AH + BH} \right).AB = A{B^2} = {2022^2}\,\,\left( {dpcm} \right)\)

    4) Tính chu vi của tam giác \(COH\)

    Chu vi tam giác \(COH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \(OH + CH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \({\left( {OH + CH} \right)^2}\) đạt giá trị lớn nhất

    Áp dụng định lý cô-si cho \(OH,CH\) tìm được giá trị lớn nhất.

    Cách giải:

    Đề thi vào 10 môn Toán Đắk Lắk năm 2021 1

    1) Trong \(\left( O \right)\) ta có \(\angle AEB = {90^0}\)( góc nội tiếp chắn nửa đường tròn)

    Tứ giác \(BHDE\) có: \(\angle BED + \angle BHD = {180^0}\).

    Suy ra tứ giác \(BHDE\) nội tiếp (dhnb).

    2) Ta có:

    \(\angle ACD = \angle CBA\) (cùng phụ với \(\angle BCD\)).

    \(\angle CEA = \angle CBA\) (2 góc nội tiếp cùng chắn cung \(CA\)).

    \( \Rightarrow \angle ACD = \angle CEA\).

    Xét tam giác \(ACD\) và tam giác \(AEC\) có: \(\left\{ \begin{array}{l}\angle CAD = \angle CAE\\\angle ACD = \angle CEA\,\,\,\left( {cmt} \right)\end{array} \right.\)

    Suy ra \( \Rightarrow \dfrac{{AD}}{{AC}} = \dfrac{{CD}}{{EC}} \Rightarrow AD.EC = CD.AC\,\,\left( {dpcm} \right)\).

    3) Xét tam giác \(AHD\) và tam giác \(AEB\) có: \(\left\{ \begin{array}{l}\angle AHD = \angle AEB = {90^0}\\\angle HAD = \angle BAE\end{array} \right.\)

    .

    Suy ra \(\dfrac{{AH}}{{AE}} = \dfrac{{AD}}{{AB}} \Rightarrow AD.AE = AH.AB\)\(\left( 1 \right)\)

    Ta có:

    \(\begin{array}{l}AD.AE + BH.AB = AH.AB + BH.AB\\ = \left( {AH + BH} \right).AB = A{B^2} = {2022^2}\,\,\left( {dpcm} \right)\end{array}\)

    4) Chu vi tam giác \(COH\) là: \(CO + OH + CH = \dfrac{{AB}}{2} + OH + CH = 1011 + OH + CH\)

    Chu vi tam giác \(COH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \(OH + CH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \({\left( {OH + CH} \right)^2}\) đạt giá trị lớn nhất

    Ta có: \(0 < OH,CH < OC = 1011\).

    Áp dụng định lý cô-si cho \(OH,CH\) ta có:

    \({\left( {OH + CH} \right)^2} \le 2\left( {O{H^2} + C{H^2}} \right) = 2.O{C^2} \Rightarrow OH + CH \le OC\sqrt 2 \)

    Dấu “=” xảy ra khi \(OH = CH = \dfrac{{OC\sqrt 2 }}{2}\) hay \(\Delta OHC\) vuông cân tại \(H\) \( \Rightarrow \angle COA = {45^0}\).

    Vậy chu vi tam giác \(COH\) đạt giá trị lớn nhất khi góc \(COA\) bằng \({45^0}\).

    Câu 5 (1,0 điểm):

    Cho \(a \ge 1348,\,\,b \ge 1348\). Chứng minh \({a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\).

    Phương pháp:

    Xuất phát từ bất đẳng thức: \({a^2} + {b^2} \ge 2ab\).

    Cách giải:

    Ta có: \({a^2} + {b^2} \ge 2ab \Leftrightarrow {a^2} + {b^2} + ab \ge 3ab\)

    \( \Rightarrow {a^2} + {b^2} + ab \ge \dfrac{3}{2}ab + \dfrac{3}{2}ab \ge \dfrac{3}{2}.a.1348 + \dfrac{3}{2}.b.1348\)(Do \(a \ge 1348,\,\,b \ge 1348\))

    \( \Rightarrow {a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\,\,\,\left( {dpcm} \right)\).

    Dấu “=” xảy ra khi \(a = b = 1348\).

    Lời giải chi tiết

      Câu 1 (1,5 điểm)

      1) Giải phương trình: \(2{x^2} + 5x - 3 = 0.\)

      2) Cho hàm số \(y = \left( {m - 1} \right)x + 2021.\) Tìm tất cả các giá trị của tham số m để đồ thị hàm số đồng biến trên \(\mathbb{R}\).

      3) Cho \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \). Tính giá trị của biểu thức \(P = a + b - 2ab.\)

      Phương pháp:

      1) Tính \(\Delta = {b^2} - 4ac\) (hoặc \(\Delta ' = {\left( {b'} \right)^2} - ac\)), sử dụng công thức nghiệm của phương trình bậc hai một ẩn: \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta }}{{2a}}\) (hoặc \({x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}\)), tính được nghiệm của phương trình, kết luận.

      2) Hàm số \(y = ax + b\) đồng biến trên \(\mathbb{R} \Leftrightarrow a > 0\)

      3) Thay \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \) vào \(P\), sau đó tính toán.

      Cách giải:

      1) Xét phương trình \(2{x^2} + 5x - 3 = 0\)

      Ta có: \(\Delta = {5^2} + 24 = 49 > 0\)

      \( \Rightarrow \) Phương trình có hai nghiệm: \({x_1} = \dfrac{{ - 5 + \sqrt {49} }}{4} = \dfrac{1}{2}\); \({x_2} = \dfrac{{ - 5 - \sqrt {49} }}{4} = - 3\)

      Vậy phương trình có tập nghiệm: \(S = \left\{ { - 3;\,\,\dfrac{1}{2}} \right\}\).

      2) Hàm số \(y = \left( {m - 1} \right)x + 2021\) đồng biến trên \(\mathbb{R}\) khi và chỉ khi: \(m - 1 > 0 \Leftrightarrow m > 1\)

      Vậy với \(m > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).

      3) Thay \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 \) vào \(P = a + b - 2ab\) ta được:

      \(\begin{array}{l}P = 1 + \sqrt 2 + 1 - \sqrt 2 - 2\left( {1 + \sqrt 2 } \right)\left( {1 - \sqrt 2 } \right)\\\,\,\,\, = 2 - 2\left[ {1 - {{\left( {\sqrt 2 } \right)}^2}} \right]\\\,\,\, = 2 - 2\left( {1 - 2} \right)\\\,\,\, = 2 + 2 = 4.\end{array}\)

      Vậy \(P = 4\) khi \(a = 1 + \sqrt 2 \) và \(b = 1 - \sqrt 2 .\)

      Câu 2 (2,0 điểm):

      Cho biểu thức: \(P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\) với \(x \ge 0,x \ne 4,x \ne 9\)

      1) Rút gọn biểu thức \(P\)

      2) Tìm tất cả các giá trị của \(x\) để \(P > 1\)

      Phương pháp:

      1) Xác định mẫu thức chung của biểu thức

      Quy đồng các phân thức, thực hiện các phép toán từ đó rút gọn được biểu thức.

      2) Vì \(P > 1 \Leftrightarrow P - 1 > 0\)

      Rút gọn \(P - 1\)

      \(\dfrac{{f\left( x \right)}}{{g\left( x \right)}} > 0\) khi \(f\left( x \right)\) và \(g\left( x \right)\) cùng âm hoặc dương.

      Cách giải:

      1) ĐKXĐ: \(x \ge 0,x \ne 4,x \ne 9\)

      \(\begin{array}{l}P = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - \left( {x - 9} \right) + \left( {2x - 3\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\,\, = \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\\,\,\,\, = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\end{array}\)

      Vậy với \(x \ge 0,\,\,x \ne 4,\,\,x \ne 9\) ta có \(B = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}.\)

      b) Điều kiện: \(x \ge 0,\,\,x \ne 4,\,\,x \ne 9\)

      \(\begin{array}{l}P > 1 \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} > 1\\ \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - 1 > 0\\ \Leftrightarrow \dfrac{{\sqrt x + 1 - \left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}} > 0\\ \Leftrightarrow \dfrac{4}{{\sqrt x - 3}} > 0\\ \Leftrightarrow \sqrt x - 3 > 0\,\,\,\left( {do\,\,\,4 > 0} \right)\\ \Leftrightarrow \sqrt x > 3\\ \Leftrightarrow x > 9\end{array}\)

      Kết hợp với điều kiện xác định ta được \(x > 9\) thì \(P > 1\)

      Vậy \(x > 9\) thì \(P > 1.\)

      Câu 3 (2,0 điểm):

      1) Trong mặt phẳng tọa độ \(Oxy\), viết phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\)song song với đường thẳng \(y = 2x - 1\).

      2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2\left( {m - 1} \right)x - m + 3\). Gọi \({x_1},{x_2}\) lần lượt là hoành độ giao điểm của đường thẳng \(\left( d \right)\) và Parabol \(\left( P \right)\). Tìm giá trị nhỏ nhất của biểu thức \(M = x_1^2 + x_2^2\).

      Phương pháp:

      1) Viết phương trình đường thẳng \(\Delta \) biết \(\Delta \) đi qua điểm \(A\left( {{x_A};{y_A}} \right)\) và song song với \(d:y = a'x + b'\) (\(a';b'\) đã biết)

      Gọi phương trình đường thẳng\(\Delta \) là \(y = ax + b\,\,\,\left( {a \ne 0} \right)\)

      Vì \(\Delta //d \Rightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\)

      \( \Rightarrow d:y = a'x + b\)

      \(\Delta \) đi qua điểm \(A\left( {{x_A};{y_A}} \right)\), từ đó tìm được \(b\), đối chiếu điều kiện ở trên

      Kết luận phương trình đường thẳng cần tìm.

      2) Xét phương trình hoành độ giao điểm giữa \(\left( P \right)\) và \(\left( d \right)\) \(\left( 1 \right)\)

      Để \(\left( P \right)\) cắt \(\left( d \right)\) tại hai điểm phân biệt \( \Leftrightarrow \left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\).

      \( \Leftrightarrow \Delta > 0\)

      Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)

      Thay vào \(M = x_1^2 + x_2^2\), vận dụng hằng đẳng thức tìm được giá trị nhỏ nhất của \(M\)

      Cách giải:

      1) Gọi phương trình đường thẳng\(\Delta \) là \(y = ax + b\,\,\,\left( {a \ne 0} \right)\)

      Vì \(\Delta \) song song với đường thẳng \(y = 2x - 1\) nên \(\left\{ \begin{array}{l}a = 2\\b \ne - 1\end{array} \right.\).

      Vì \(\Delta \) đi qua điểm \(A\left( {1; - 2} \right)\) nên ta có: \( - 2 = a + b\).

      Thay \(a = 2\) vào ta được: \( - 2 = 2 + b \Leftrightarrow b = - 4\,\,\,\left( {tm} \right)\).

      Vậy đường thẳng \(\Delta \)cần tìm có phương trình là \(y = 2x - 4\).

      2) Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình:

      \({x^2} = 2\left( {m - 1} \right)x - m + 3 \Leftrightarrow {x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\,\,\left( * \right)\)

      Phương trình (*) có:

      \(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - \left( {m - 3} \right) = {m^2} - 2m + 1 - m + 3\\\,\,\,\,\,\, = {m^2} - 3m + 4 = {\left( {m - \dfrac{3}{2}} \right)^2} + \dfrac{7}{4} > 0\,\,\,\,\forall m \in \mathbb{R}\end{array}\)

      \( \Rightarrow \) Phương trình (*) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m\).

      \( \Rightarrow \) \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) với mọi \(m\).

      Áp dụng định lí Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right)\\{x_1}{x_2} = m - 3\end{array} \right.\)

      Khi đó ta có:

      \(\begin{array}{l}\,\,\,\,\,\,M = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\\ \Leftrightarrow M = {\left[ {2\left( {m - 1} \right)} \right]^2} - 2.\left( {m - 3} \right)\\ \Leftrightarrow M = 4{m^2} - 8m + 4 - 2m + 6\\ \Leftrightarrow M = 4{m^2} - 10m + 10\\ \Leftrightarrow M = {\left( {2m} \right)^2} - 2.2m.\dfrac{5}{2} + {\left( {\dfrac{5}{2}} \right)^2} + \dfrac{{15}}{4}\end{array}\)

      \( \Leftrightarrow M = {\left( {2m - \dfrac{5}{2}} \right)^2} + \dfrac{{15}}{4} \ge \dfrac{{15}}{4}\,\,\forall m\) (Vì \({\left( {2m - \dfrac{5}{2}} \right)^2} \ge 0\,\,\forall m\))

      Vậy \({M_{\min }} = \dfrac{{15}}{4}\). Dấu “=” xảy ra khi và chỉ khi \(2m = \dfrac{5}{2} \Leftrightarrow m = \dfrac{5}{4}\).

      Câu 4 (3,5 điểm):

      Trên nửa đường tròn tâm \(O\)đường kính \(AB\) với \(AB = 2022\), lấy điểm \(C\) (\(C\) khác \(A\) và \(B\)) từ \(C\) kẻ \(CH\) vuông góc với \(AB\)\(\left( {H \in AB} \right)\). Gọi \(D\) là điểm bất kì trên đoạn \(CH\)(\(D\) khác \(C,H\)), đường thẳng \(AD\) cắt nửa đường tròn tại điểm thứ hai \(E\).

      1) Chứng minh \(BHDE\) nội tiếp.

      2) Chứng minh \(AD.EC = CD.AC\)

      3) Chứng minh \(AD.AE + BH.BA = {2022^2}\)

      4) Khi điểm \(C\) di động trên nửa đường tròn \(C\) khác \(A,\,B\) và điểm chính giữa cung \(AB\), xác định vị trí điểm \(C\) sao cho chu vi tam giác \(COH\) đạt giá trị lớn nhất.

      Phương pháp:

      1) Vận dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

      2) Ta sẽ chứng minh:

      3) Ta sẽ chứng minh:

      Ta có: \(AD.AE + BH.AB = AH.AB + BH.AB = \left( {AH + BH} \right).AB = A{B^2} = {2022^2}\,\,\left( {dpcm} \right)\)

      4) Tính chu vi của tam giác \(COH\)

      Chu vi tam giác \(COH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \(OH + CH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \({\left( {OH + CH} \right)^2}\) đạt giá trị lớn nhất

      Áp dụng định lý cô-si cho \(OH,CH\) tìm được giá trị lớn nhất.

      Cách giải:

      Đề thi vào 10 môn Toán Đắk Lắk năm 2021 1 1

      1) Trong \(\left( O \right)\) ta có \(\angle AEB = {90^0}\)( góc nội tiếp chắn nửa đường tròn)

      Tứ giác \(BHDE\) có: \(\angle BED + \angle BHD = {180^0}\).

      Suy ra tứ giác \(BHDE\) nội tiếp (dhnb).

      2) Ta có:

      \(\angle ACD = \angle CBA\) (cùng phụ với \(\angle BCD\)).

      \(\angle CEA = \angle CBA\) (2 góc nội tiếp cùng chắn cung \(CA\)).

      \( \Rightarrow \angle ACD = \angle CEA\).

      Xét tam giác \(ACD\) và tam giác \(AEC\) có: \(\left\{ \begin{array}{l}\angle CAD = \angle CAE\\\angle ACD = \angle CEA\,\,\,\left( {cmt} \right)\end{array} \right.\)

      Suy ra \( \Rightarrow \dfrac{{AD}}{{AC}} = \dfrac{{CD}}{{EC}} \Rightarrow AD.EC = CD.AC\,\,\left( {dpcm} \right)\).

      3) Xét tam giác \(AHD\) và tam giác \(AEB\) có: \(\left\{ \begin{array}{l}\angle AHD = \angle AEB = {90^0}\\\angle HAD = \angle BAE\end{array} \right.\)

      .

      Suy ra \(\dfrac{{AH}}{{AE}} = \dfrac{{AD}}{{AB}} \Rightarrow AD.AE = AH.AB\)\(\left( 1 \right)\)

      Ta có:

      \(\begin{array}{l}AD.AE + BH.AB = AH.AB + BH.AB\\ = \left( {AH + BH} \right).AB = A{B^2} = {2022^2}\,\,\left( {dpcm} \right)\end{array}\)

      4) Chu vi tam giác \(COH\) là: \(CO + OH + CH = \dfrac{{AB}}{2} + OH + CH = 1011 + OH + CH\)

      Chu vi tam giác \(COH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \(OH + CH\) đạt giá trị lớn nhất \( \Leftrightarrow \) \({\left( {OH + CH} \right)^2}\) đạt giá trị lớn nhất

      Ta có: \(0 < OH,CH < OC = 1011\).

      Áp dụng định lý cô-si cho \(OH,CH\) ta có:

      \({\left( {OH + CH} \right)^2} \le 2\left( {O{H^2} + C{H^2}} \right) = 2.O{C^2} \Rightarrow OH + CH \le OC\sqrt 2 \)

      Dấu “=” xảy ra khi \(OH = CH = \dfrac{{OC\sqrt 2 }}{2}\) hay \(\Delta OHC\) vuông cân tại \(H\) \( \Rightarrow \angle COA = {45^0}\).

      Vậy chu vi tam giác \(COH\) đạt giá trị lớn nhất khi góc \(COA\) bằng \({45^0}\).

      Câu 5 (1,0 điểm):

      Cho \(a \ge 1348,\,\,b \ge 1348\). Chứng minh \({a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\).

      Phương pháp:

      Xuất phát từ bất đẳng thức: \({a^2} + {b^2} \ge 2ab\).

      Cách giải:

      Ta có: \({a^2} + {b^2} \ge 2ab \Leftrightarrow {a^2} + {b^2} + ab \ge 3ab\)

      \( \Rightarrow {a^2} + {b^2} + ab \ge \dfrac{3}{2}ab + \dfrac{3}{2}ab \ge \dfrac{3}{2}.a.1348 + \dfrac{3}{2}.b.1348\)(Do \(a \ge 1348,\,\,b \ge 1348\))

      \( \Rightarrow {a^2} + {b^2} + ab \ge 2022\left( {a + b} \right)\,\,\,\left( {dpcm} \right)\).

      Dấu “=” xảy ra khi \(a = b = 1348\).

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Đắk Lắk năm 2021 đặc sắc thuộc chuyên mục bài tập toán 9 trên nền tảng đề thi toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Đắk Lắk năm 2021: Tổng quan và cấu trúc

      Kỳ thi tuyển sinh vào lớp 10 môn Toán tại tỉnh Đắk Lắk năm 2021 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Đề thi thường bao gồm các dạng bài tập thuộc chương trình Toán lớp 9, tập trung vào các chủ đề chính như Đại số, Hình học và số học. Việc nắm vững kiến thức cơ bản và luyện tập thường xuyên là chìa khóa để đạt kết quả tốt trong kỳ thi này.

      Nội dung chi tiết đề thi vào 10 môn Toán Đắk Lắk năm 2021

      Đề thi vào 10 môn Toán Đắk Lắk năm 2021 thường có cấu trúc gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải, chứng minh các bài toán.

      Các chủ đề thường xuất hiện trong đề thi bao gồm:

      • Đại số: Phương trình bậc nhất, bậc hai, hệ phương trình, bất phương trình, hàm số.
      • Hình học: Hệ thức lượng trong tam giác vuông, tam giác đồng dạng, đường tròn, diện tích hình.
      • Số học: Các phép toán cơ bản, phân số, tỉ lệ thức, phần trăm.

      Phân tích các đề thi vào 10 môn Toán Đắk Lắk năm 2021

      Để giúp các em học sinh hiểu rõ hơn về đề thi, chúng tôi đã phân tích chi tiết các đề thi vào 10 môn Toán Đắk Lắk năm 2021. Qua phân tích, có thể thấy rằng:

      • Độ khó của đề thi ở mức trung bình, phù hợp với năng lực của học sinh khá giỏi.
      • Đề thi tập trung vào các kiến thức cơ bản, nhưng cũng có một số câu hỏi vận dụng cao, đòi hỏi học sinh phải có khả năng tư duy logic và sáng tạo.
      • Thời gian làm bài thường là 90 phút, đòi hỏi học sinh phải phân bổ thời gian hợp lý để hoàn thành tất cả các câu hỏi.

      Luyện thi vào 10 môn Toán Đắk Lắk năm 2021 hiệu quả

      Để luyện thi vào 10 môn Toán Đắk Lắk năm 2021 hiệu quả, các em học sinh cần:

      1. Nắm vững kiến thức cơ bản trong chương trình Toán lớp 9.
      2. Luyện tập thường xuyên các dạng bài tập khác nhau.
      3. Giải các đề thi thử để làm quen với cấu trúc đề thi và rèn luyện kỹ năng làm bài.
      4. Tìm kiếm sự giúp đỡ của giáo viên hoặc bạn bè khi gặp khó khăn.

      Tài liệu ôn thi vào 10 môn Toán Đắk Lắk năm 2021

      Ngoài bộ đề thi mà chúng tôi cung cấp, các em học sinh có thể tham khảo thêm các tài liệu ôn thi khác như:

      • Sách giáo khoa Toán lớp 9.
      • Sách bài tập Toán lớp 9.
      • Các đề thi thử vào 10 môn Toán của các trường khác.
      • Các trang web học toán online uy tín.

      Lời khuyên cho thí sinh

      Trước khi bước vào kỳ thi, hãy:

      • Đảm bảo sức khỏe tốt và tinh thần thoải mái.
      • Chuẩn bị đầy đủ các dụng cụ cần thiết như bút, thước, máy tính bỏ túi.
      • Đọc kỹ đề thi trước khi làm bài.
      • Phân bổ thời gian hợp lý cho từng câu hỏi.
      • Kiểm tra lại bài làm trước khi nộp.

      Giaitoan.edu.vn – Đồng hành cùng các em trên con đường chinh phục tri thức

      Giaitoan.edu.vn tự hào là một trong những trang web học toán online uy tín, cung cấp đầy đủ các tài liệu ôn thi, đề thi và giải pháp học tập hiệu quả cho các em học sinh. Chúng tôi luôn đồng hành cùng các em trên con đường chinh phục tri thức và đạt được thành công trong kỳ thi vào 10 môn Toán Đắk Lắk năm 2021.

      NămLink đề thi
      2021[Link đến đề thi 2021]

      Tài liệu, đề thi và đáp án Toán 9