Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Huế năm 2018

Đề thi vào 10 môn Toán Huế năm 2018

Đề thi vào 10 môn Toán Huế năm 2018: Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán của tỉnh Huế năm 2018. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này bao gồm các đề thi chính thức của các trường THPT chuyên và không chuyên trên địa bàn tỉnh Huế, được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm. Các em có thể sử dụng bộ đề này để tự đánh giá năng lực và tìm ra những điểm cần cải thiện.

Câu 1 (1,5 điểm) a) Tìm x để biểu thức

Đề bài

    Câu 1 (1,5 điểm)

    a) Tìm x để biểu thức \(A = \sqrt {2x - 1} \) có nghĩa.

    b) Không sử dụng máy tính cầm tay, tính giá trị của biểu thức \(B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right).\)

    c) Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\)

    Câu 2 (1,5 điểm)

    a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)

    b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)

    Câu 3 (1 điểm) Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm được ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc.

    Câu 4 (2 điểm) Cho phương trình \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số).

    a) Giải phương trình (1) khi \(m = - 1.\)

    b) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt.

    c) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn điều kiện:\(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32.\)

    Câu 5 (3,0 điểm) Cho tam giác ABC cân tại A. Gọi M là điểm bất kì trên cạnh AC (M không trùng A và C). Một đường thẳng đi qua M cắt cạnh BC tại I và cắt đường thẳng AB tại N sao cho I là trung điểm của MN. Đường phân giác trong của góc BAC cắt đường tròn ngoại tiếp tam giác AMN tại điểm D (D không trùng A). Chứng minh rằng:

    a) \(DN = DM\) và \(DI \bot MN\)

    b) Tứ giác BNDI nội tiếp

    c) Đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định (khác điểm A) khi M di chuyển trên cạnh AC.

    Bài 6 (1,0 điểm)  Cho hình chữ nhật ABCD với AB = 2a, BC = a. Khi quay hình chữ nhật ABCD quanh cạnh AB một vòng ta được hình trụ có thể tích V1 và khi quay hình chữ nhật ABCD quanh cạnh BC một vòng thì được hình trụ có thể tích V2. Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) 

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải chi tiết
    • Tải về

    Câu 1 (1,5 điểm)

    a) Tìm x để biểu thức \(A = \sqrt {2x - 1} \) có nghĩa.

    b) Không sử dụng máy tính cầm tay, tính giá trị của biểu thức \(B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right).\)

    c) Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\)

    Câu 2 (1,5 điểm)

    a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)

    b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)

    Câu 3 (1 điểm) Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm được ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc.

    Câu 4 (2 điểm) Cho phương trình \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số).

    a) Giải phương trình (1) khi \(m = - 1.\)

    b) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt.

    c) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn điều kiện:\(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32.\)

    Câu 5 (3,0 điểm) Cho tam giác ABC cân tại A. Gọi M là điểm bất kì trên cạnh AC (M không trùng A và C). Một đường thẳng đi qua M cắt cạnh BC tại I và cắt đường thẳng AB tại N sao cho I là trung điểm của MN. Đường phân giác trong của góc BAC cắt đường tròn ngoại tiếp tam giác AMN tại điểm D (D không trùng A). Chứng minh rằng:

    a) \(DN = DM\) và \(DI \bot MN\)

    b) Tứ giác BNDI nội tiếp

    c) Đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định (khác điểm A) khi M di chuyển trên cạnh AC.

    Bài 6 (1,0 điểm)  Cho hình chữ nhật ABCD với AB = 2a, BC = a. Khi quay hình chữ nhật ABCD quanh cạnh AB một vòng ta được hình trụ có thể tích V1 và khi quay hình chữ nhật ABCD quanh cạnh BC một vòng thì được hình trụ có thể tích V2. Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) 

    Câu 1:

    Phương pháp:

    +) Biểu thức \(A = \sqrt {f\left( x \right)} \) có nghĩa \( \Leftrightarrow f\left( x \right) \ge 0.\)

    +) Sử dụng công thức: \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \;\;khi\;\;A \ge 0\\ - A\sqrt B \;\;khi\;\;A < 0\end{array} \right..\)

    +) Quy đồng mẫu thức các phân số sau đó biến đổi và rút gọn của biểu thức.

    Cách giải:

    a) Tìm x để biểu thức \(A = \sqrt {2x - 1} \) có nghĩa.

    \(A\) có nghĩa \( \Leftrightarrow 2x - 1 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}.\)

    Vậy biểu thức \(A\) có nghĩa khi \(x \ge \dfrac{1}{2}.\)

    b) Không sử dụng máy tính cầm tay, tính giá trị của biểu thức \(B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right).\)

    \(\begin{array}{l}B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right)\\\;\;\; = \sqrt 3 \left( {3\sqrt 3 - 2.2\sqrt 3 + 4\sqrt 3 } \right)\\\;\;\; = \sqrt 3 .3\sqrt 3 = 9.\end{array}\)

    c) Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\)

    \(\begin{array}{l}C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\\\;\; = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right):\dfrac{{\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}\\\;\; = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{1}{{\sqrt a - 1}}} \right):\dfrac{1}{{\sqrt a - 1}}\\\;\; = \dfrac{{\sqrt a - 1}}{{\sqrt a - 1}}.\left( {\sqrt a - 1} \right)\\\;\; = \sqrt a - 1.\end{array}\)

    Vậy \(C = \sqrt a - 1.\)

    Câu 2:

    Phương pháp:

    +) Đặt \({x^2} = t\;\;\left( {t \ge 0} \right)\), đưa phương trình về dạng phương trình bậc hai ẩn \(t\) từ đó tìm ẩn \(x.\)

    +) Đường thẳng có hệ số góc bằng \( - 3\) từ đó ta tìm được \(m.\) Đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\), ta thay tọa độ điểm A vào công thức hàm số của đường thẳng \(d\) để tìm \(n.\)

    Cách giải:

    a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)

    Đặt \({x^2} = t\;\;\left( {t \ge 0} \right).\) Khi đó ta có phương trình:

    \({t^2} + 3t - 4 = 0.\;\;\left( * \right)\)

    Có \(a = 1,\;b = 3,\;\;c = - 4 \Rightarrow a + b + c = 1 + 3 - 4 = 0.\)

    \( \Rightarrow \) phương trình (*) có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{t_1} = 1\;\;\left( {tm} \right)\\{t_2} = - 4\;\;\left( {ktm} \right)\end{array} \right. \Rightarrow {x^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right..\)

    Vậy phương trình đã cho có hai nghiệm phân biệt \(x = - 1\) và \(x = 1.\)

    b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)

    Đường thẳng \(d\) có hệ số góc bằng \( - 3 \Rightarrow m - 1 = - 3 \Leftrightarrow m = - 2.\)

    \( \Rightarrow d:\;\;y = - 3x + n.\)

    Đường thẳng \(d\) đi qua \(A\left( {1; - 1} \right)\) nên ta có: \( - 1 = - 3.1 + n \Leftrightarrow n = 2.\)

    Vậy \(m = - 2\) và \(n = 2\) thỏa mãn bài toán.

    Câu 3:

    Phương pháp:

    Giải bài toàn bằng cách lập phương trình hoặc hệ phương trình:

    +) Gọi ẩn và đặt điều kiện cho ẩn.

    +) Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết.

    +) Dựa vào giả thiết của bài toán để lập phương trình hoặc hệ phương trình.

    +) Giải phương trình hoặc hê phương trình vừa lập để tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.

    Cách giải:

    Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm được ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc.

    Gọi số chiếc nón lá mỗi ngày cơ sở đó làm được là \(x\) (chiếc) \(\left( {x \in N*} \right).\)

    Số ngày cơ sở đó dự kiến làm hết 300 chiếc nón lá là: \(\dfrac{{300}}{x}\;\) (ngày).

    Sau khi làm tăng thêm 5 chiếc nón lá một ngày thì thời gian cơ sở đó làm hết 300 chiếc nón lá là: \(\dfrac{{300}}{{x + 5}}\) (ngày)

    Theo đề bài ta có phương trình: \(\dfrac{{300}}{x} - \dfrac{{300}}{{x + 5}} = 3\)

    \(\begin{array}{l} \Leftrightarrow 300\left( {x + 5} \right) - 300x = 3x\left( {x + 5} \right)\\ \Leftrightarrow 100x + 500 - 100x = {x^2} + 5x\\ \Leftrightarrow {x^2} + 5x - 500 = 0\\ \Leftrightarrow \left( {x - 20} \right)\left( {x + 25} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 20 = 0\\x + 25 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 20\;\;\left( {tm} \right)\\x = - 25\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)

    Vậy theo dự kiến, mỗi ngày cơ sở đó làm được 20 chiếc nón lá.

    Câu 4:

    Phương pháp:

    a) Thay giá trị \(m = - 1\) vào phương trình (1) sau đó giải phương trình (1).

    b) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)

    c) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) và hệ thức bài cho để tìm \(m.\) 

    Cách giải:

    Cho phương trình \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số).

    a) Giải phương trình (1) khi \(m = - 1.\)

    Thay giá trị \(m = - 1\) vào phương trình ta được:

    \(\begin{array}{l}\left( 1 \right) \Leftrightarrow {x^2} - 2x + 1 - 1 = 0\\ \Leftrightarrow {x^2} - 2x = 0\\ \Leftrightarrow x\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\end{array}\)

    Vậy với \(m = - 1\) thì phương trình có tập nghiệm \(S = \left\{ {0;\;2} \right\}.\)

    b) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt.

    Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - {m^2} - m > 0 \Leftrightarrow m < 0.\)

    Vậy với \(m < 0\) thì phương trình (1) có hai nghiệm phân biệt.

    c) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn điều kiện:\(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32.\)

    Với \(m < 0\) thì phương trình (1) có hai nghiệm phân biệt.

    Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2m\\{x_1}{x_2} = {m^2} + m\end{array} \right..\)

    Theo đề bài ta có: \(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32\)

    \(\begin{array}{l} \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2}\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow \left[ {{{\left( { - 2m} \right)}^2} - 4\left( {{m^2} + m} \right)} \right]\left( { - 2m} \right) = 32\\ \Leftrightarrow \left( {4{m^2} - 4{m^2} - 4m} \right).m = - 16\\ \Leftrightarrow - 4{m^2} = - 16\\ \Leftrightarrow {m^2} = 4\\ \Leftrightarrow \left[ \begin{array}{l}m = 2\;\;\left( {ktm} \right)\\m = - 2\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

    Vậy \(m = - 2\) thỏa mãn điều kiện bài toán.

    Câu 5.

    Phương pháp:

    a) Chứng minh sđ cung DN = sđ cung DM.

    b) Chứng minh tứ giác BNDI có tổng hai góc đối bằng 1800.

    c) Dựa vào các điểm cố định và điều kiện I là trung điểm của MN.

    Cách giải:

    Đề thi vào 10 môn Toán Huế năm 2018 1

    a) \(DN = DM\) và \(DI \bot MN\)

    Ta có \(\widehat {NAD} = \widehat {MAD}\,\,\left( {gt} \right)\) (Do AD là tia phân giác của góc MAN)

    Nên sđ cung DN = sđ cung DM (hai góc nội tiếp bằng nhau thì chắn hai cung bằng nhau)

    \( \Rightarrow DN = DM\) (hai dây căng hai cung bằng nhau thì bằng nhau).

    \( \Rightarrow \Delta DMN\) cân tại D \( \Rightarrow \) Trung tuyến DI đồng thời là đường cao \( \Rightarrow DI \bot MN\).

    b) Tứ giác BNDI nội tiếp

    Ta có \(\widehat {DNM} = \widehat {DAM}\) (hai góc nội tiếp cùng chắn cung DM).

    Mà \(\widehat {DAM} = \widehat {DAN}\,\,\left( {gt} \right) \Rightarrow \widehat {DNM} = \widehat {DAN}\)

    \( \Rightarrow {90^0} - \widehat {DNM} = {90^0} - \widehat {DAN} \Leftrightarrow \widehat {NDI} = \widehat {ABC}\) (Do tam giác ABC cân tại A nên phân giác AD đồng thời là đường cao, tức là: \(AD \bot BC\) )

    Mà \(\widehat {ABC} + \widehat {IBN} = {180^0}\) (kề bù) \( \Rightarrow \widehat {NDI} + \widehat {IBN} = {180^0} \Rightarrow \) tứ giác BNDI nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

    c) Đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định (khác điểm A) khi M di chuyển trên cạnh AC.

    Bài 6.

    Phương pháp:

    Sử dụng công thức tính thể tích khối trụ \(V = \pi {R^2}h\) trong đó R, h lần lượt là bán kính đáy và chiều cao của khối trụ.

    Cách giải:

    Khi quay hình chữ nhật ABCD quanh cạnh AB ta được khối trụ có chiều cao h1 = AB = 2a và bán kính đáy R1 = BC = a.

    \( \Rightarrow {V_1} = \pi R_1^2{h_1} = \pi B{C^2}.AB = \pi .{a^2}.2a = 2\pi {a^3}\)

    Khi quay hình chữ nhật ABCD quanh cạnh BC ta được khối trụ có chiều cao h2 = BC = a và bán kính đáy R2 = AB = 2a.

    \( \Rightarrow {V_2} = \pi R_2^2{h_2} = \pi A{B^2}.BC = \pi .{\left( {2a} \right)^2}.a = 4\pi {a^3}\)

    Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{2\pi {a^3}}}{{4\pi {a^3}}} = \dfrac{1}{2}\). 

    Lời giải chi tiết

      Câu 1:

      Phương pháp:

      +) Biểu thức \(A = \sqrt {f\left( x \right)} \) có nghĩa \( \Leftrightarrow f\left( x \right) \ge 0.\)

      +) Sử dụng công thức: \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \;\;khi\;\;A \ge 0\\ - A\sqrt B \;\;khi\;\;A < 0\end{array} \right..\)

      +) Quy đồng mẫu thức các phân số sau đó biến đổi và rút gọn của biểu thức.

      Cách giải:

      a) Tìm x để biểu thức \(A = \sqrt {2x - 1} \) có nghĩa.

      \(A\) có nghĩa \( \Leftrightarrow 2x - 1 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}.\)

      Vậy biểu thức \(A\) có nghĩa khi \(x \ge \dfrac{1}{2}.\)

      b) Không sử dụng máy tính cầm tay, tính giá trị của biểu thức \(B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right).\)

      \(\begin{array}{l}B = \sqrt 3 \left( {\sqrt {{3^2}.3} - 2\sqrt {{2^2}.3} + \sqrt {{4^2}.3} } \right)\\\;\;\; = \sqrt 3 \left( {3\sqrt 3 - 2.2\sqrt 3 + 4\sqrt 3 } \right)\\\;\;\; = \sqrt 3 .3\sqrt 3 = 9.\end{array}\)

      c) Rút gọn biểu thức \(C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\) với \(a > 0\) và \(a \ne 1.\)

      \(\begin{array}{l}C = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{a - \sqrt a }}} \right):\dfrac{{\sqrt a + 1}}{{a - 1}}\\\;\; = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{{\sqrt a }}{{\sqrt a \left( {\sqrt a - 1} \right)}}} \right):\dfrac{{\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}\\\;\; = \left( {\dfrac{{\sqrt a }}{{\sqrt a - 1}} - \dfrac{1}{{\sqrt a - 1}}} \right):\dfrac{1}{{\sqrt a - 1}}\\\;\; = \dfrac{{\sqrt a - 1}}{{\sqrt a - 1}}.\left( {\sqrt a - 1} \right)\\\;\; = \sqrt a - 1.\end{array}\)

      Vậy \(C = \sqrt a - 1.\)

      Câu 2:

      Phương pháp:

      +) Đặt \({x^2} = t\;\;\left( {t \ge 0} \right)\), đưa phương trình về dạng phương trình bậc hai ẩn \(t\) từ đó tìm ẩn \(x.\)

      +) Đường thẳng có hệ số góc bằng \( - 3\) từ đó ta tìm được \(m.\) Đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\), ta thay tọa độ điểm A vào công thức hàm số của đường thẳng \(d\) để tìm \(n.\)

      Cách giải:

      a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)

      Đặt \({x^2} = t\;\;\left( {t \ge 0} \right).\) Khi đó ta có phương trình:

      \({t^2} + 3t - 4 = 0.\;\;\left( * \right)\)

      Có \(a = 1,\;b = 3,\;\;c = - 4 \Rightarrow a + b + c = 1 + 3 - 4 = 0.\)

      \( \Rightarrow \) phương trình (*) có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{t_1} = 1\;\;\left( {tm} \right)\\{t_2} = - 4\;\;\left( {ktm} \right)\end{array} \right. \Rightarrow {x^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right..\)

      Vậy phương trình đã cho có hai nghiệm phân biệt \(x = - 1\) và \(x = 1.\)

      b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)

      Đường thẳng \(d\) có hệ số góc bằng \( - 3 \Rightarrow m - 1 = - 3 \Leftrightarrow m = - 2.\)

      \( \Rightarrow d:\;\;y = - 3x + n.\)

      Đường thẳng \(d\) đi qua \(A\left( {1; - 1} \right)\) nên ta có: \( - 1 = - 3.1 + n \Leftrightarrow n = 2.\)

      Vậy \(m = - 2\) và \(n = 2\) thỏa mãn bài toán.

      Câu 3:

      Phương pháp:

      Giải bài toàn bằng cách lập phương trình hoặc hệ phương trình:

      +) Gọi ẩn và đặt điều kiện cho ẩn.

      +) Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết.

      +) Dựa vào giả thiết của bài toán để lập phương trình hoặc hệ phương trình.

      +) Giải phương trình hoặc hê phương trình vừa lập để tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.

      Cách giải:

      Để phục vụ cho Festival Huế 2018, một cơ sở sản xuất nón lá dự kiến làm ra 300 chiếc nón lá trong một thời gian đã định. Do được bổ sung thêm nhân công nên mỗi ngày cơ sở đó làm ra được nhiều hơn 5 chiếc nón lá so với dự kiến ban đầu, vì vậy cơ sở sản xuất đã hoàn thành 300 chiếc nón lá sớm hơn 3 ngày so với thời gian đã định. Hỏi theo dự kiến ban đầu, mỗi ngày cơ sở đó làm được ra bao nhiêu chiếc nón lá? Biết rằng số chiếc nón lá làm ra mỗi ngày là bằng nhau và nguyên chiếc.

      Gọi số chiếc nón lá mỗi ngày cơ sở đó làm được là \(x\) (chiếc) \(\left( {x \in N*} \right).\)

      Số ngày cơ sở đó dự kiến làm hết 300 chiếc nón lá là: \(\dfrac{{300}}{x}\;\) (ngày).

      Sau khi làm tăng thêm 5 chiếc nón lá một ngày thì thời gian cơ sở đó làm hết 300 chiếc nón lá là: \(\dfrac{{300}}{{x + 5}}\) (ngày)

      Theo đề bài ta có phương trình: \(\dfrac{{300}}{x} - \dfrac{{300}}{{x + 5}} = 3\)

      \(\begin{array}{l} \Leftrightarrow 300\left( {x + 5} \right) - 300x = 3x\left( {x + 5} \right)\\ \Leftrightarrow 100x + 500 - 100x = {x^2} + 5x\\ \Leftrightarrow {x^2} + 5x - 500 = 0\\ \Leftrightarrow \left( {x - 20} \right)\left( {x + 25} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 20 = 0\\x + 25 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 20\;\;\left( {tm} \right)\\x = - 25\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)

      Vậy theo dự kiến, mỗi ngày cơ sở đó làm được 20 chiếc nón lá.

      Câu 4:

      Phương pháp:

      a) Thay giá trị \(m = - 1\) vào phương trình (1) sau đó giải phương trình (1).

      b) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)

      c) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) và hệ thức bài cho để tìm \(m.\) 

      Cách giải:

      Cho phương trình \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số).

      a) Giải phương trình (1) khi \(m = - 1.\)

      Thay giá trị \(m = - 1\) vào phương trình ta được:

      \(\begin{array}{l}\left( 1 \right) \Leftrightarrow {x^2} - 2x + 1 - 1 = 0\\ \Leftrightarrow {x^2} - 2x = 0\\ \Leftrightarrow x\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right..\end{array}\)

      Vậy với \(m = - 1\) thì phương trình có tập nghiệm \(S = \left\{ {0;\;2} \right\}.\)

      b) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt.

      Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - {m^2} - m > 0 \Leftrightarrow m < 0.\)

      Vậy với \(m < 0\) thì phương trình (1) có hai nghiệm phân biệt.

      c) Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn điều kiện:\(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32.\)

      Với \(m < 0\) thì phương trình (1) có hai nghiệm phân biệt.

      Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2m\\{x_1}{x_2} = {m^2} + m\end{array} \right..\)

      Theo đề bài ta có: \(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32\)

      \(\begin{array}{l} \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2}\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow \left[ {{{\left( { - 2m} \right)}^2} - 4\left( {{m^2} + m} \right)} \right]\left( { - 2m} \right) = 32\\ \Leftrightarrow \left( {4{m^2} - 4{m^2} - 4m} \right).m = - 16\\ \Leftrightarrow - 4{m^2} = - 16\\ \Leftrightarrow {m^2} = 4\\ \Leftrightarrow \left[ \begin{array}{l}m = 2\;\;\left( {ktm} \right)\\m = - 2\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

      Vậy \(m = - 2\) thỏa mãn điều kiện bài toán.

      Câu 5.

      Phương pháp:

      a) Chứng minh sđ cung DN = sđ cung DM.

      b) Chứng minh tứ giác BNDI có tổng hai góc đối bằng 1800.

      c) Dựa vào các điểm cố định và điều kiện I là trung điểm của MN.

      Cách giải:

      Đề thi vào 10 môn Toán Huế năm 2018 1 1

      a) \(DN = DM\) và \(DI \bot MN\)

      Ta có \(\widehat {NAD} = \widehat {MAD}\,\,\left( {gt} \right)\) (Do AD là tia phân giác của góc MAN)

      Nên sđ cung DN = sđ cung DM (hai góc nội tiếp bằng nhau thì chắn hai cung bằng nhau)

      \( \Rightarrow DN = DM\) (hai dây căng hai cung bằng nhau thì bằng nhau).

      \( \Rightarrow \Delta DMN\) cân tại D \( \Rightarrow \) Trung tuyến DI đồng thời là đường cao \( \Rightarrow DI \bot MN\).

      b) Tứ giác BNDI nội tiếp

      Ta có \(\widehat {DNM} = \widehat {DAM}\) (hai góc nội tiếp cùng chắn cung DM).

      Mà \(\widehat {DAM} = \widehat {DAN}\,\,\left( {gt} \right) \Rightarrow \widehat {DNM} = \widehat {DAN}\)

      \( \Rightarrow {90^0} - \widehat {DNM} = {90^0} - \widehat {DAN} \Leftrightarrow \widehat {NDI} = \widehat {ABC}\) (Do tam giác ABC cân tại A nên phân giác AD đồng thời là đường cao, tức là: \(AD \bot BC\) )

      Mà \(\widehat {ABC} + \widehat {IBN} = {180^0}\) (kề bù) \( \Rightarrow \widehat {NDI} + \widehat {IBN} = {180^0} \Rightarrow \) tứ giác BNDI nội tiếp (Tứ giác có tổng hai góc đối bằng 1800).

      c) Đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định (khác điểm A) khi M di chuyển trên cạnh AC.

      Bài 6.

      Phương pháp:

      Sử dụng công thức tính thể tích khối trụ \(V = \pi {R^2}h\) trong đó R, h lần lượt là bán kính đáy và chiều cao của khối trụ.

      Cách giải:

      Khi quay hình chữ nhật ABCD quanh cạnh AB ta được khối trụ có chiều cao h1 = AB = 2a và bán kính đáy R1 = BC = a.

      \( \Rightarrow {V_1} = \pi R_1^2{h_1} = \pi B{C^2}.AB = \pi .{a^2}.2a = 2\pi {a^3}\)

      Khi quay hình chữ nhật ABCD quanh cạnh BC ta được khối trụ có chiều cao h2 = BC = a và bán kính đáy R2 = AB = 2a.

      \( \Rightarrow {V_2} = \pi R_2^2{h_2} = \pi A{B^2}.BC = \pi .{\left( {2a} \right)^2}.a = 4\pi {a^3}\)

      Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{2\pi {a^3}}}{{4\pi {a^3}}} = \dfrac{1}{2}\). 

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Huế năm 2018 đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Huế năm 2018: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 môn Toán tại tỉnh Huế năm 2018 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để giúp các em chuẩn bị tốt nhất, giaitoan.edu.vn xin giới thiệu chi tiết về cấu trúc đề thi, các dạng bài tập thường gặp và hướng dẫn giải chi tiết.

      Cấu trúc đề thi vào 10 môn Toán Huế năm 2018

      Đề thi vào 10 môn Toán Huế năm 2018 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và kỹ năng tính toán nhanh.
      • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, bao gồm các bài toán đại số, hình học và số học.

      Các dạng bài tập thường gặp

      Trong đề thi vào 10 môn Toán Huế năm 2018, các em thường gặp các dạng bài tập sau:

      1. Bài toán về phương trình và hệ phương trình: Đây là một trong những dạng bài tập quan trọng, đòi hỏi các em phải nắm vững các phương pháp giải phương trình và hệ phương trình.
      2. Bài toán về bất đẳng thức: Các em cần hiểu rõ các tính chất của bất đẳng thức và các phương pháp chứng minh bất đẳng thức.
      3. Bài toán về hàm số: Các em cần nắm vững các khái niệm về hàm số, đồ thị hàm số và các tính chất của hàm số.
      4. Bài toán về hình học: Các em cần nắm vững các định lý và tính chất của hình học, cũng như các phương pháp chứng minh hình học.
      5. Bài toán về số học: Các em cần nắm vững các kiến thức về số nguyên tố, ước số, bội số và các phép toán trên số nguyên.

      Hướng dẫn giải chi tiết một số bài toán tiêu biểu

      Để giúp các em hiểu rõ hơn về cách giải các bài toán trong đề thi vào 10 môn Toán Huế năm 2018, chúng ta sẽ cùng nhau giải một số bài toán tiêu biểu:

      Bài toán 1: Giải phương trình

      Cho phương trình: 2x + 3 = 7. Hãy tìm nghiệm của phương trình.

      Giải:

      2x + 3 = 7

      2x = 7 - 3

      2x = 4

      x = 2

      Bài toán 2: Chứng minh bất đẳng thức

      Chứng minh rằng: a2 + b2 ≥ 2ab với mọi số thực a và b.

      Giải:

      Ta có: (a - b)2 ≥ 0 với mọi số thực a và b.

      Khai triển biểu thức, ta được: a2 - 2ab + b2 ≥ 0

      Suy ra: a2 + b2 ≥ 2ab

      Lời khuyên khi làm bài thi

      Để đạt kết quả tốt nhất trong kỳ thi vào 10 môn Toán Huế năm 2018, các em cần lưu ý những điều sau:

      • Đọc kỹ đề bài: Trước khi bắt đầu giải bài, hãy đọc kỹ đề bài để hiểu rõ yêu cầu và các điều kiện của bài toán.
      • Lập kế hoạch giải bài: Xác định các bước cần thực hiện để giải bài toán và lập kế hoạch giải bài một cách hợp lý.
      • Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
      • Quản lý thời gian: Phân bổ thời gian hợp lý cho từng bài toán để đảm bảo hoàn thành bài thi trong thời gian quy định.

      Tài liệu ôn thi bổ sung

      Ngoài bộ đề thi vào 10 môn Toán Huế năm 2018, các em có thể tham khảo thêm các tài liệu ôn thi sau:

      • Sách giáo khoa Toán lớp 9
      • Sách bài tập Toán lớp 9
      • Các đề thi thử vào 10 môn Toán của các trường THPT khác
      • Các trang web học toán online uy tín như giaitoan.edu.vn

      Chúc các em ôn thi tốt và đạt kết quả cao trong kỳ thi tuyển sinh vào lớp 10 môn Toán tại tỉnh Huế năm 2018!

      Tài liệu, đề thi và đáp án Toán 9