Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp các đề thi thử vào lớp 10 môn Toán chất lượng cao. Đề số 16 này là một phần trong bộ đề thi được thiết kế để giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.
Đề thi này bao gồm các dạng bài tập đa dạng, từ trắc nghiệm đến tự luận, bao phủ các kiến thức trọng tâm của chương trình Toán lớp 9. Chúng tôi tin rằng, với việc luyện tập thường xuyên với các đề thi thử như thế này, các em sẽ đạt được kết quả tốt nhất.
Đề thi vào lớp 10 môn Toán - Đề số 16 có đáp án và lời giải chi tiết
Đề bài
Bài 1. (1,5 điểm)
a) Trục căn thức ở mẫu của biểu thức \(A = \dfrac{1}{{2 - \sqrt 3 }}\)
b) Cho \(a \ge 0,a \ne 4.\) Chứng minh \(\dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{a - 4}} = 1\) .
Bài 2. (2,0 điểm)
a) Giải hệ phương trình: \(\left\{ \begin{array}{l}x + 2y = 14\\2x + 3y = 24\end{array} \right.\)
b) Giải phương trình \(4x + \dfrac{3}{{x - 1}} = 11\)
Bài 3. (1,5 điểm)
Vẽ đồ thị của các hàm số \(y = - \dfrac{1}{2}{x^2}\) và \(y = x - 4\) trên cùng một mặt phẳng tọa độ. Gọi A và B là các giao điểm của đồ thị hai hàm số trên. Tính bán kính của đường tròn ngoại tiếp tam giác OAB, với O là gốc tọa độ (đơn vị đo trên các tọa độ là centimet).
Bài 4 (1 điểm):
Cho phương trình \({x^2} + 2\left( {m - 1} \right)x + 4m - 11 = 0,\) với \(m\) là tham số. Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn hệ thức \(2{\left( {{x_1} - 1} \right)^2} + \left( {6 - {x_2}} \right)\left( {{x_1}{x_2} + 11} \right) = 72.\)
Bài 5 (1 điểm):
Cạnh huyền của một tam giác vuông bằng 17 cm. Hai cạnh góc vuông có độ dài hơn kém nhau 7 cm. Tính diện tích của tam giác vuông đó.
Bài 6 (3 điểm):
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O có AB < AC. Trên cung nhỏ AC lấy điểm M khác A thỏa mãn MA < MC. Vẽ đường kính MN của đường tròn (O) và gọi H, K lần lượt là hình chiếu vuông góc của A trên MB, MN. Chứng minh rằng:
a) Bốn điểm A, H, K, M cùng nằm trên một đường tròn.
b) AH.AK = HB.MK.
c) Khi điểm M di động trên cung nhỏ AC thì đường thẳng HK luôn qua một điểm cố định.
Lời giải chi tiết
Bài 1.
a) Trục căn thức ở mẫu của biểu thức \(A = \dfrac{1}{{2 - \sqrt 3 }}\)
\(A = \dfrac{1}{{2 - \sqrt 3 }} \)
\(\;\;\;= \dfrac{{2 + \sqrt 3 }}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}\)
\(\;\;\;= \dfrac{{2 + \sqrt 3 }}{{{2^2} - {{\left( {\sqrt 3 } \right)}^2}}} \)
\(\;\;\;= 2 + \sqrt 3 \)
b) Cho \(a \ge 0,a \ne 4.\) Chứng minh \(\dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{a - 4}} = 1\) .
Với: \(a \ge 0,a \ne 4.\)
\(\begin{array}{l}VT = \dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{a - 4}}\\ = \dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{{2\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 2} \right)}}\\ = \dfrac{{\sqrt a }}{{\sqrt a + 2}} + \dfrac{2}{{\sqrt a + 2}}\\ = 1 = VP\end{array}\)
Vậy đẳng thức đã được chứng minh.
Bài 2.
a) Giải hệ phương trình: \(\left\{ \begin{array}{l}x + 2y = 14\\2x + 3y = 24\end{array} \right.\)
\(\left\{ \begin{array}{l}x + 2y = 14\\2x + 3y = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\2x + 3y = 24\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\2\left( {14 - 2y} \right) + 3y = 24\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\28 - y = 24\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 14 - 2y\\y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 4\end{array} \right.\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {6;4} \right)\).
b) Giải phương trình \(4x + \dfrac{3}{{x - 1}} = 11\) (1)
Điều kiện: \(x \ne 1\)
\(\begin{array}{l}4x + \dfrac{3}{{x - 1}} = 11\\ \Leftrightarrow \dfrac{{4x\left( {x - 1} \right)}}{{x - 1}} + \dfrac{3}{{x - 1}} = \dfrac{{11\left( {x - 1} \right)}}{{x - 1}}\\ \Leftrightarrow 4{x^2} - 4x + 3 = 11x - 11\\ \Leftrightarrow 4{x^2} - 15x + 14 = 0\,\,\left( 2 \right)\end{array}\)
Ta có: \(\Delta = {\left( { - 15} \right)^2} - 4.4.14 = 1 > 0\)
Vậy phương trình (2) có 2 nghiệm phân biệt là: \(\left[ \begin{array}{l}{x_1} = \dfrac{{15 - 1}}{8} = \dfrac{7}{4}\left( {tm} \right)\\{x_2} = \dfrac{{15 + 1}}{8} = 2\left( {tm} \right)\end{array} \right.\)
Vậy phương trình đã cho có tập nghiệm là: \(S = \left\{ {2;\dfrac{7}{4}} \right\}\)
Bài 3.
+) Vẽ đồ thị hàm số: \(y = - \dfrac{1}{2}{x^2}\)
x | \( - 4\) | \( - 2\) | 0 | 2 | 4 |
y | \( - 8\) | \( - 2\) | 0 | \( - 2\) | \( - 8\) |
Khi đó đồ thị hàm số \(y = - \dfrac{1}{2}{x^2}\) có hình dạng là 1 Parabol và đi qua các điểm \(\left( { - 4; - 8} \right);\left( { - 2; - 2} \right);\left( {0;0} \right);\left( {2; - 2} \right);\left( {4; - 8} \right)\)
+) Vẽ đồ thị hàm số: \(y = x - 4\)
x | 0 | 4 |
y | \( - 4\) | 0 |
Khi đó đồ thị hàm số \(y = x - 4\) là một đường thẳng và đi qua các điểm \(\left( {0; - 4} \right);\left( {4;0} \right)\)
+) Phương trình hoành độ giao điểm của hàm số \(y = - \dfrac{1}{2}{x^2}\) và \(y = x - 4\) là:
\( - \dfrac{1}{2}{x^2} = x - 4 \\\Leftrightarrow {x^2} + 2x - 8 = 0 \\\Leftrightarrow \left( {x - 2} \right)\left( {x + 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\)
\(\begin{array}{l}x = 2 \Rightarrow y = - 2 \Rightarrow A\left( {2; - 2} \right)\\x = - 4 \Rightarrow y = - 8 \Rightarrow B\left( { - 4; - 8} \right)\end{array}\)
Xét tam giác OAE ta có: \(OD = DE = \dfrac{1}{2}OE = 2cm;AD = 2cm\) nên tam giác OAE vuông tại A.
Khi đó ta có: \(OA \bot AB\) nên tam giác OAB vuông tại A.
Ta có tâm đường tròn ngoại tiếp tam giác OAB là trung điểm của cạnh huyền OB và bán kính của đường tròn \( = \dfrac{1}{2}OB\)
Ta có: Áp dụng định lý pitago trong tam giác vuông OBC có: \(O{B^2} = O{C^2} + B{C^2} = {4^2} + {8^2} = 80 \) \(\Rightarrow OB = 4\sqrt 5 \)
Vậy bán kính đường tròn ngoại tiếp tam giác OAB là \(\dfrac{1}{2}OB = 2\sqrt 5 \)
Bài 4:
Cho phương trình \({x^2} + 2\left( {m - 1} \right)x + 4m - 11 = 0,\) với \(m\) là tham số. Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn hệ thức \(2{\left( {{x_1} - 1} \right)^2} + \left( {6 - {x_2}} \right)\left( {{x_1}{x_2} + 11} \right) = 72.\)
Phương trình có hai nghiệm phân biệt \({x_1},\;\;{x_2} \Leftrightarrow \Delta ' > 0\)
\(\begin{array}{l} \Leftrightarrow {\left( {m - 1} \right)^2} - 4m + 11 > 0\\ \Leftrightarrow {m^2} - 2m + 1 - 4m + 11 > 0\\ \Leftrightarrow {m^2} - 6m + 12 > 0\\ \Leftrightarrow {m^2} - 6m + 9 + 3 > 0\\ \Leftrightarrow {\left( {m - 3} \right)^2} + 3 > 0.\end{array}\)
Vì \({\left( {m - 3} \right)^2} \ge 0\;\;\forall m \Rightarrow {\left( {m - 3} \right)^2} + 3 > 0\;\forall \;m \Rightarrow \Delta ' > 0\;\forall m.\)
Hay phương trình đã cho luôn có hai nghiệm phân biệt \({x_1},\;\;{x_2}\) với mọi \(m.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\left( {m - 1} \right)\\{x_1}{x_2} = 4m - 11\end{array} \right.\)
Vì \({x_1};\,\,{x_2}\) là nghiệm của phương trình \({x^2} + 2\left( {m - 1} \right)x + 4m - 11 = 0\) nên ta có:
\(\left\{ \begin{array}{l}2x_1^2 + 4\left( {m - 1} \right){x_1} + 8m - 22 = 0\\x_2^2 + 2\left( {m - 1} \right){x_2} + 4m - 11 = 0\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}2x_1^2 = - 4\left( {m - 1} \right){x_1} - 8m + 22\\x_2^2 = - 2\left( {m - 1} \right){x_2} - 4m + 11\end{array} \right.\)
\(\begin{array}{l}2{\left( {{x_1} - 1} \right)^2} + \left( {6 - {x_2}} \right)\left( {{x_1}{x_2} + 11} \right) = 72\\ \Leftrightarrow 2x_1^2 - 4{x_1} + 2 + 6{x_1}{x_2} + 66 - {x_1}x_2^2 - 11{x_2} = 72\\ \Leftrightarrow - 4\left( {m - 1} \right){x_1} - 8m + 22 - 4{x_1} + 6{x_1}{x_2} - {x_1}\left( { - 2\left( {m - 1} \right){x_2} - 4m + 11} \right) - 11{x_2} = 4\\ \Leftrightarrow - 4m{x_1} + 4{x_1} - 8m + 22 - 4{x_1} + 6{x_1}{x_2} + 2\left( {m - 1} \right){x_1}{x_2} + 4m{x_1} - 11{x_1} - 11{x_2} = 4\\ \Leftrightarrow \left( {2m + 4} \right){x_1}{x_2} - 11\left( {{x_1} + {x_2}} \right) = 8m - 18\\ \Leftrightarrow \left( {2m + 4} \right)\left( {4m - 11} \right) + 22\left( {m - 1} \right) = 8m - 18\\ \Leftrightarrow 8{m^2} - 22m + 16m - 44 + 22m - 22 = 8m - 18\\ \Leftrightarrow 8{m^2} + 8m - 48 = 0\\ \Leftrightarrow {m^2} + m - 6 = 0\\ \Leftrightarrow {m^2} - 2m + 3m - 6 = 0\\ \Leftrightarrow m\left( {m - 2} \right) + 3\left( {m - 2} \right) = 0\\ \Leftrightarrow \left( {m + 3} \right)\left( {m - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = 2\end{array} \right.\end{array}\)
Vậy \(m = - 3\) hoặc \(m = 2\) thỏa mãn yêu cầu bài toán.
Bài 5:
Cạnh huyền của một tam giác vuông bằng 17 cm. Hai cạnh góc vuông có độ dài hơn kém nhau 7 cm. Tính diện tích của tam giác vuông đó.
Gọi độ dài một cạnh góc vuông lớn hơn của tam giác vuông là \(x\;\left( {cm} \right),\;\left( {7 < x < 17} \right).\)
Khi đó độ cạnh góc vuông còn lại của tam giác vuông đó là: \(x - 7\;\left( {cm} \right)\)
Áp dụng định lý Pi-ta-go cho tam giác vuông này ta có phương trình:
\(\begin{array}{l}\;\;\;\;{x^2} + {\left( {x - 7} \right)^2} = {17^2}\\ \Leftrightarrow 2{x^2} - 14x + 49 = 289\\ \Leftrightarrow 2{x^2} - 14x - 240 = 0\\ \Leftrightarrow 2\left( {x - 15} \right)\left( {x + 8} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 15 = 0\\x + 8 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 15\;\;\left( {tm} \right)\\x = - 8\;\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
\( \Rightarrow \) độ dài cạnh còn lại của tam giác vuông là: \(15 - 7 = \;8cm.\)
Vậy diện tích của tam giác vuông đó là: \(S = \dfrac{1}{2}.8.15 = 60\;c{m^2}.\)
Bài 6:
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O có AB < AC. Trên cung nhỏ AC lấy điểm M khác A thỏa mãn MA < MC. Vẽ đường kính MN của đường tròn (O) và gọi H, K lần lượt là hình chiếu vuông góc của A trên MB, MN. Chứng minh rằng:
a) Bốn điểm A, H, K, M cùng nằm trên một đường tròn.
Xét tứ giác \(AHKM\) ta có: \(\widehat {AHM} = \widehat {AKM} = {90^0}\;\;\left( {gt} \right)\)
Mà hai góc này là góc kề cạnh \(HK\) và cùng nhìn đoạn \(AM.\)
\( \Rightarrow AHKM\) là tứ giác nội tiếp (dấu hiệu nhận biết).
Hay bốn điểm \(A,H,\;K,\;M\) cùng nằm trên một đường tròn (đpcm).
b) AH.AK = HB.MK.
Ta có :
Mà
Mà \(\widehat {ABH} + \widehat {BAH} = {90^0}\) (tam giác ABH vuông tại H).
\( \Rightarrow \widehat {AMK} = \widehat {BAH}\).
Xét tam giác AMK và tam giác BAH có :
\(\begin{array}{l}\widehat {AKM} = \widehat {BHA} = {90^0}\\\widehat {AMK} = \widehat {BAH}\,\,\left( {cmt} \right)\\ \Rightarrow \Delta AMK \sim \Delta BAH\,\,\left( {g.g} \right)\\ \Rightarrow \dfrac{{AK}}{{HB}} = \dfrac{{MK}}{{AH}}\\ \Rightarrow AH.AK = HB.MK\end{array}\)
c) Khi điểm M di động trên cung nhỏ AC thì đường thẳng HK luôn qua một điểm cố định.
Kéo dài HK cắt AB tại E.
Ta có \(\widehat {MAK} = \widehat {MHK}\) (hai góc nội tiếp cùng chắn cung MK).
Lại có \(\widehat {MHK} = \widehat {EHB}\) (đối đỉnh)
\( \Rightarrow \widehat {MAK} = \widehat {EHB}\)
Do \(\Delta AMK \sim \Delta BAH\,\,\left( {cmt} \right) \)
\(\Rightarrow \widehat {MAK} = \widehat {ABH} = \widehat {EBH}\)
\( \Rightarrow \widehat {EHB} = \widehat {EBH} \) \(\Rightarrow \Delta EHB\) cân tại E.
\( \Rightarrow EH = EB\,\,\left( 1 \right)\).
Ta có \(\widehat {EBH} + \widehat {EAH} = {90^0}\) (Tam giác ABH vuông tại H)
\(\widehat {EHB} + \widehat {EHA} = \widehat {AHB} = {90^0}\)
\( \Rightarrow \widehat {EAH} = \widehat {EHA} \Rightarrow \Delta EAH\) cân tại E \( \Rightarrow EA = EH\,\,\left( 2 \right)\).
Từ (1) và (2) \( \Rightarrow EA = EB \Rightarrow E\) là trung điểm của AB. Do A, B cố định \( \Rightarrow E\) cố định.
Vậy khi M di chuyển trên cung nhỏ AC thì HK luôn đi qua trung điểm của AB (đpcm).
Đề thi vào lớp 10 môn Toán là một kỳ thi quan trọng đánh giá năng lực học tập của học sinh sau nhiều năm học tập môn Toán ở bậc THCS. Việc chuẩn bị kỹ lưỡng và làm quen với các dạng bài tập thường xuất hiện trong đề thi là vô cùng cần thiết. Đề số 16 mà chúng tôi cung cấp dưới đây là một đề thi thử được xây dựng dựa trên cấu trúc đề thi chính thức của các trường THPT chuyên và các tỉnh thành trên cả nước.
Đề thi số 16 bao gồm hai phần chính:
Đề thi bao gồm các chủ đề sau:
Dưới đây là hướng dẫn giải chi tiết cho từng câu hỏi trong đề thi:
Đề bài: Giải phương trình 2x + 3 = 7
Giải: 2x = 7 - 3 => 2x = 4 => x = 2
Đề bài: Tính diện tích hình vuông có cạnh bằng 5cm.
Giải: Diện tích = cạnh * cạnh = 5 * 5 = 25 cm2
Đề bài: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính BC.
Giải: Áp dụng định lý Pitago: BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25 => BC = 5cm
Để đạt kết quả tốt nhất trong kỳ thi vào lớp 10 môn Toán, các em cần:
Việc luyện đề thi thử không chỉ giúp các em làm quen với cấu trúc đề thi mà còn giúp các em đánh giá được trình độ hiện tại của mình và xác định những kiến thức còn yếu để tập trung ôn tập. Ngoài ra, việc luyện đề còn giúp các em rèn luyện kỹ năng giải toán nhanh và chính xác, đồng thời giảm bớt áp lực tâm lý khi bước vào kỳ thi chính thức.
Ngoài đề thi số 16, giaitoan.edu.vn còn cung cấp nhiều tài liệu ôn thi khác như:
Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi vào lớp 10 sắp tới!