Chào mừng bạn đến với bài viết phân tích và giải chi tiết Đề số 38 - Đề thi vào lớp 10 môn Toán. Đây là một trong những đề thi thử quan trọng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp không chỉ đáp án mà còn cả phương pháp giải bài toán một cách dễ hiểu, giúp bạn tự tin hơn trong kỳ thi sắp tới.
Đề thi vào lớp 10 môn Toán - Đề số 38 có đáp án và lời giải chi tiết
Đề bài
Câu 1 (3 điểm):
1) Tính giá trị của biểu thức: \(A = \sqrt {4 - 2\sqrt 3 } - \dfrac{1}{2}\sqrt {12} .\)
2) Giải phương trình và hệ phương trình sau:
\(a)\;{x^4} + {x^2} - 20 = 0\)
\(b)\;\left\{ \begin{array}{l}3x - y = 11\\2x + y = 9\end{array} \right..\)
3) Cho phương trình \({x^2} - 2x - 5 = 0\) có hai nghiệm \({x_1},\;{x_2}.\) Không giải phương trình, hãy tính giá trị của các biểu thức: \(B = x_1^2 + x_2^2,\;\;C = x_1^5 + x_2^5.\)
Câu 2 (2 điểm): Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \dfrac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Câu 3 (1,5 điểm): Hai bến sông A và B cách nhau 60km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h.
Câu 4 (2,5 điểm): Cho tam giác ABC có ba góc nhọn (AB < AC), các đường cao AF, BD và CE cắt nhau tại H.
1) Chứng minh tứ giác BEDC nội tiếp đường tròn.
2) Chứng minh AE.AB = AD.AC.
3) Chứng minh FH là phân giác của \(\widehat {EFD}.\)
4) Gọi O là trung điểm của đoạn thẳng BC. Chứng minh \(\widehat {DOC} = \widehat {FED}.\)
Câu 5 (1 điểm): Một hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.
Lời giải chi tiết
Câu 1:
\(\begin{array}{l}1)\;\;A = \sqrt {4 - 2\sqrt 3 } - \dfrac{1}{2}\sqrt {12} \\\;\;\;\;\;\;\; = \sqrt {{{\left( {\sqrt 3 } \right)}^2} - 2.\sqrt 3 .1 + 1} - \dfrac{1}{2}.\sqrt {{2^2}.3} \\\;\;\;\;\;\;\; = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} - \dfrac{{2\sqrt 3 }}{2}\\\;\;\;\;\;\;\; = \left| {\sqrt 3 - 1} \right| - \sqrt 3 \\\;\;\;\;\;\;\; = \sqrt 3 - 1 - \sqrt 3 = - 1.\;\;\left( {do\;\;\sqrt 3 - 1 > 0} \right).\end{array}\)
2) Giải phương trình và hệ phương trình sau:
\(a)\;{x^4} + {x^2} - 20 = 0\)
Đặt \({x^2} = t\;\;\left( {t \ge 0} \right).\) Khi đó ta có phương trình:
\(\begin{array}{l} \Leftrightarrow {t^2} + t - 20 = 0\\ \Leftrightarrow {t^2} + 5t - 4t - 20 = 0\\ \Leftrightarrow \left( {t - 4} \right)\left( {t + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 4 = 0\\t + 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 4\;\;\left( {tm} \right)\\t = - 5\;\;\left( {ktm} \right)\end{array} \right.\\ \Rightarrow {x^2} = 4 \Leftrightarrow x = \pm 2.\end{array}\)
Vậy phương trình có tập nghiệm \(S = \left\{ { - 2;\;2} \right\}.\)
\(b)\;\left\{ \begin{array}{l}3x - y = 11\\2x + y = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 20\\y = 9 - 2x\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 9 - 2.4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right..\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\;y} \right) = \left( {4;1} \right).\)
3) Cho phương trình \({x^2} - 2x - 5 = 0\) có hai nghiệm \({x_1},\;{x_2}.\) Không giải phương trình, hãy tính giá trị của các biểu thức: \(B = x_1^2 + x_2^2,\;\;C = x_1^5 + x_2^5.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = - 5\end{array} \right..\)
Khi đó: \(B = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {2^2} - 2.\left( { - 5} \right) = 14.\)
\(\begin{array}{l}C = x_1^5 + x_2^5 = \left( {{x_1} + {x_2}} \right)\left( {x_1^4 - x_1^3{x_2} + x_1^2x_2^2 - {x_1}x_2^3 + x_2^4} \right)\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {x_1^4 + x_2^4 - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2} \right]\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {x_1^2 + x_2^2} \right)}^2} - 2x_1^2x_2^2 - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2} \right]\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {x_1^2 + x_2^2} \right)}^2} - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) - x_1^2x_2^2} \right].\end{array}\)
Áp dụng hệ thức Vi-ét và kết quả của biểu thức B ta được:
\(C = 2\left[ {{{14}^2} - \left( { - 5} \right).14 - {{\left( { - 5} \right)}^2}} \right] = 2.\left( {196 + 70 - 25} \right) = 482.\)
Câu 2:
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \dfrac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
+) Với \(m = 2\) ta có: \(\left( d \right):\;\;y = x + 2.\)
Ta có bảng giá trị:
\(x\) | \(0\) | \( - 2\) |
\(y = x + 2\) | \(2\) | \(0\) |
Đường thẳng \(\left( d \right)\) đi qua hai điểm \(\left( {0;\;2} \right)\) và \(\left( { - 2;\;0} \right).\)
+) Vẽ đồ thị hàm số \(\left( P \right):\)
\(x\) | \( - 4\) | \( - 2\) | \(0\) | \(2\) | \(4\) |
\(y = \dfrac{1}{2}{x^2}\) | \(8\) | \(2\) | \(0\) | \(2\) | \(8\) |
Đồ thị \(\left( P \right)\) là đường cong đi qua các điểm \(\left( { - 4;\;8} \right),\;\;\left( { - 2;\;2} \right),\;\left( {0;\;0} \right),\;\left( {2;\;2} \right),\;\;\left( {4;\;8} \right).\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
Phương trình hoành độ giao điểm của hai đồ thị là: \(x + m = \dfrac{1}{2}{x^2} \Leftrightarrow {x^2} - 2x - 2m = 0.\;\;\left( * \right)\)
Để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\) thì phương trình \(\left( * \right)\) có nghiệm hai phân biệt \( \Leftrightarrow \Delta ' > 0\)
\( \Leftrightarrow 1 + 2m > 0 \Leftrightarrow m > - \dfrac{1}{2}.\)
Vậy \(m > - \dfrac{1}{2}.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Với \(m > - \dfrac{1}{2}\) thì \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};\;{y_1}} \right),\;\;B\left( {{x_2};\;{y_2}} \right).\)
Khi đó \({x_1},\;{x_2}\) là hai nghiệm của phương trình \(\left( * \right).\) Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = - 2m\end{array} \right..\)
Ta có: \(A,\;\;B \in \left( d \right) \Rightarrow A\left( {{x_1};\;{x_1} + m} \right),\;\;B\left( {{x_2};\;x + m} \right).\)
Theo đề bài ta có: \(AB = 6\sqrt 2 \)
\(\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{x_2} + m - {x_1} - m} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow \sqrt {2{{\left( {{x_2} - {x_1}} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow {\left( {{x_2} - {x_1}} \right)^2} = 36\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 36\\ \Leftrightarrow {2^2} - 4.\left( { - 2m} \right) = 36\\ \Leftrightarrow 8m = 32\\ \Leftrightarrow m = 4\;\;\left( {tm} \right).\end{array}\)
Vậy \(m = 4.\)
Câu 3:
Hai bến sông A và B cách nhau 60km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h.
Gọi vận tốc ngược dòng của ca nô là \(x\;\left( {km/h} \right)\;\;\left( {x > 0} \right).\)
Khi đó vận tốc ca nô khi xuôi dòng là: \(x + 6\;\;\left( {km/h} \right).\)
Thời gian ca nô đi hết khúc sông khi xuôi dòng là: \(\dfrac{{60}}{{x + 6}}\;\left( h \right).\)
Thời gian ca nô đi hết khúc sông khi ngược dòng là: \(\dfrac{{60}}{x}\;\left( h \right).\)
Theo đề bài ta có phương trình: \(\dfrac{{60}}{x} - \dfrac{{60}}{{x + 6}} = \dfrac{{20}}{{60}} = \dfrac{1}{3}\)
\(\begin{array}{l} \Leftrightarrow 3.60\left( {x + 6} \right) - 3.60x = x\left( {x + 6} \right)\\ \Leftrightarrow 180x + 1080 - 180x = {x^2} + 6x\\ \Leftrightarrow {x^2} + 6x - 1080 = 0\\ \Leftrightarrow \left( {x - 30} \right)\left( {x + 36} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 30 = 0\\x + 36 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 30\;\;\left( {tm} \right)\\x = - 36\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
Vậy vận tốc của ca nô khi ngược dòng là \(30\;km/h.\)
Câu 4:
Cho tam giác ABC có ba góc nhọn (AB < AC), các đường cao AF, BD và CE cắt nhau tại H.
1) Chứng minh tứ giác BEDC nội tiếp đường tròn.
Xét tứ giác \(BEDC\) ta có: \(\widehat {BEC} = \widehat {BDC} = {90^0}\;\left( {gt} \right)\)
Mà hai góc này là hai góc kề 1 cạnh và cùng nhìn đoạn \(BC.\)
\( \Rightarrow BEDC\) là tứ giác nội tiếp (dấu hiệu nhận biết).
2) Chứng minh AE.AB = AD.AC.
Vì \(BEDC\) là tứ giác nội tiếp (cmt) nên \(\widehat {ADE} = \widehat {ABC}\) (góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối diện).
Xét \(\Delta ADE\) và \(\Delta ABC\) ta có:
\(\begin{array}{l}\widehat A\;chung\\\widehat {AED} = \widehat {ABC}\;\;\left( {cmt} \right)\\ \Rightarrow \Delta ADE \sim \Delta ABC\;\left( {g - g} \right).\\ \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} \Leftrightarrow AD.AC = AE.AB\;\;\left( {dpcm} \right).\end{array}\)
3) Chứng minh FH là phân giác của \(\widehat {EFD}.\)
Ta có: \(BEHF\) là tứ giác nội tiếp \(\left( {do\;\;\widehat {BEH} + \widehat {HFB} = {{90}^0} + {{90}^0} = {{180}^0}} \right).\)
\( \Rightarrow \widehat {EBH} = \widehat {EFH}\) (hai góc nội tiếp cùng chắn cung \(EH\)) (1)
Có \(DCFH\) là tứ giác nội tiếp \(\left( {do\;\;\widehat {HFC} + \widehat {HDC} = {{90}^0} + {{90}^0} = {{180}^0}} \right).\)
\( \Rightarrow \widehat {DCH} = \widehat {DFH}\) (hai góc nội tiếp cùng chắn cung \(DH\)) (2)
Mà \(BEDC\) là tứ giác nội tiếp (cmt)
\( \Rightarrow \widehat {DCH} = \widehat {EBH}\) (hai góc nội tiếp cùng chắn cung \(DE\)) (3)
Từ (1), (2) và (3) ta có: \(\widehat {EFH} = \widehat {HFD}.\)
Hay \(FH\) là phân giác của \(\widehat {EFD}.\) (đpcm)
4) Gọi O là trung điểm của đoạn thẳng BC. Chứng minh \(\widehat {DOC} = \widehat {FED}.\)
Xét tam giác \(BDC\) vuông tại \(D\) có đường trung tuyến \(DO \Rightarrow DO = OB = OC\) (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông).
\( \Rightarrow \Delta BOD\) cân tại \(O \Rightarrow \widehat {BDO} = \widehat {DBO}\) (tính chất tam giác cân)
\( \Rightarrow \widehat {DOC} = \widehat {DBO} + \widehat {BDO} = 2\widehat {DBO} = 2\widehat {{B_1}}.\)
Vì \(EBCD\) là tứ giác nội tiếp \( \Rightarrow \widehat {{B_1}} = \widehat {{E_1}}\) (hai góc nội tiếp cùng chắn cung \(CD\))
Vì \(BEHF\) là tứ giác nội tiếp \( \Rightarrow \widehat {{B_1}} = \widehat {{E_2}}\) (hai góc nội tiếp cùng chắn cung \(HF\))
\( \Rightarrow \widehat {DOC} = 2\widehat {{B_1}} = \widehat {{E_1}} + \widehat {{E_2}} = \widehat {FED}.\;\;\;\left( {dpcm} \right)\)
Câu 5:
Một hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.
Gọi R, h lần lượt là bán kính đáy và chiều cao của hình trụ.
Vì bán kính đáy bằng \(\dfrac{1}{2}\) đường cao nên \(R = \dfrac{1}{2}h \Rightarrow h = 2R\)
Khi đó ta có \({S_{xq}} = 2\pi Rh = 2\pi .R.2R = 256\pi \)
\(\Leftrightarrow {R^2} = 64 \Leftrightarrow R = 8\,\,\left( {cm} \right)\)
\( \Rightarrow h = 2.8 = 16\,\,\left( {cm} \right)\)
Vậy thể tích của khối trụ là \(V = \pi {R^2}h = \pi {.8^2}.16 = 1024\pi \,\,\left( {c{m^3}} \right)\).
Đề thi vào lớp 10 môn Toán là một bước ngoặt quan trọng trong quá trình học tập của học sinh. Để đạt kết quả tốt, việc luyện tập thường xuyên với các đề thi thử là vô cùng cần thiết. Đề số 38 mà chúng ta sẽ cùng phân tích sau đây là một ví dụ điển hình, bao gồm các dạng bài tập thường gặp và đòi hỏi sự hiểu biết sâu sắc về kiến thức toán học.
Đề số 38 thường bao gồm các phần sau:
Các dạng bài tập thường gặp trong đề thi bao gồm:
Chúng ta sẽ đi vào phân tích chi tiết từng câu hỏi trong đề thi số 38, từ đó đưa ra phương pháp giải tối ưu và những lưu ý quan trọng.
Để giải phương trình này, chúng ta cần áp dụng các phép biến đổi tương đương để đưa phương trình về dạng đơn giản hơn. Lưu ý kiểm tra lại nghiệm sau khi giải để đảm bảo tính chính xác.
Để chứng minh tính chất hình học này, chúng ta cần sử dụng các định lý, tính chất đã học và kết hợp chúng một cách hợp lý. Vẽ hình chính xác và rõ ràng là bước quan trọng để tìm ra lời giải.
Để tính diện tích hình này, chúng ta cần xác định đúng công thức tính diện tích và thay các giá trị số vào công thức một cách chính xác.
Để giải các bài toán trong đề thi vào lớp 10 môn Toán một cách hiệu quả, bạn cần:
Trước khi bước vào kỳ thi, hãy:
Ngoài việc luyện tập với các đề thi thử, bạn có thể tham khảo thêm các tài liệu ôn thi và sử dụng các công cụ hỗ trợ học tập như:
Chúc bạn ôn thi tốt và đạt kết quả cao trong kỳ thi vào lớp 10 môn Toán!