Logo Header
  1. Môn Toán
  2. Đề số 18 - Đề thi vào lớp 10 môn Toán

Đề số 18 - Đề thi vào lớp 10 môn Toán

Đề số 18 - Đề thi vào lớp 10 môn Toán tại giaitoan.edu.vn

Chào mừng bạn đến với bài viết phân tích và giải chi tiết Đề số 18 - Đề thi vào lớp 10 môn Toán. Đây là một trong những đề thi thử quan trọng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp không chỉ đề thi mà còn cả lời giải chi tiết, giúp bạn hiểu rõ phương pháp giải và áp dụng vào các bài toán tương tự.

Đề thi vào lớp 10 môn Toán - Đề số 18 có đáp án và lời giải chi tiết

Đề bài

Bài 1(2,0 điểm): Rút gọn các biểu thức

\(\begin{array}{l}A = 3\sqrt {\frac{1}{3}} + \frac{1}{2}\sqrt {48} + \sqrt {75} \\B = 3\sqrt {20} - 20\sqrt {\frac{1}{5}} - \frac{4}{{\sqrt 5 + \sqrt 3 }}\end{array}\)

Bài 2 (2,0 điểm): Cho hai biểu thức \(A = \frac{{2\sqrt x - 4}}{{\sqrt x - 1}}\)\(B = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} + \frac{{6\sqrt x - 4}}{{1 - x}}\)\(\left( {x \ge 0;\,\,x \ne 1} \right)\).

a) Tính giá trị của biểu thức \(A\) khi \(x = 9\).

b) Rút gọn \(B\).

c) Đặt \(P = A.B\). So sánh giá trị của \(P\) với \(2\).

Bài 3 (1,5 điểm): Cho hàm số \(y = \left( {m - 1} \right)x - 4\) có đồ thị là đường thẳng \(\left( d \right)\).

a) Tìm \(m\) để đường thẳng \(\left( d \right)\) song song với đường thẳng \(y = 2x + 5\).

b) Vẽ đồ thị hàm số trên với \(m\) tìm được ở câu a.

c) Đường thẳng \(\left( d \right)\) cắt trục \(Ox\) tại \(A\), cắt trục \(Oy\) tại \(B\). Tìm \(m\) để tam giác \(OAB\) vuông cân.

Bài 4 (1,0 điểm): Tính chiều cao của cây trong hình vẽ bên (Làm tròn đến chữ số thập phân thứ nhất)

Đề số 18 - Đề thi vào lớp 10 môn Toán 1

Bài 5 (3,0 điểm): Cho đường tròn \(\left( O \right)\) và một điểm \(M\) nằm ngoài đường tròn. Từ \(M\) kẻ hai tiếp tuyến \(MA,MB\) với đường tròn \(\left( O \right)\) (\(A\)\(B\)là hai tiếp điểm). Gọi \(I\) là giao điểm của \(OM\)\(AB\). Kẻ đường kính \(BC\) của \(\left( O \right)\).

a) Chứng minh \(4\) điểm \(M,O,A,B\) cùng thuộc một đường tròn.

b) Chứng minh \(OI.OM = O{A^2}\).

c) Qua \(\left( O \right)\) vẽ đường thẳng vuông góc với \(MC\) tại \(E\) và cắt đường thẳng \(BA\) tại \(F\). Chứng minh \(FC\) là tiếp tuyến của đường tròn \(\left( O \right)\).

Bài 6 (0,5 điểm): Cho ba số dương \(x,y,z\) thay đổi nhưng luôn thỏa mãn điều kiện \(x + y + z = 1\). Tìm giá trị lớn nhất của biểu thức: \(P = \frac{x}{{x + 1}} + \frac{y}{{y + 1}} + \frac{z}{{z + 1}}\).

Lời giải chi tiết

Bài 1 (VD):

Phương pháp

Đưa thừa số ra ngoài dấu căn \(\sqrt {{A^2}B} = \left| A \right|\sqrt B \).

Trục căn thức ở mẫu \(\frac{C}{{\sqrt A + \sqrt B }} = \frac{{C\left( {\sqrt A - \sqrt B } \right)}}{{A - B}}\).

Cách giải:

+) Ta có :

\(A = 3\sqrt {\frac{1}{3}} + \frac{1}{2}\sqrt {48} + \sqrt {75} \)\( = 3.\frac{{\sqrt 3 }}{3} + \frac{1}{2}.4\sqrt 3 + 5\sqrt 3 \) \( = \sqrt 3 + 2\sqrt 3 + 5\sqrt 3 = 8\sqrt 3 \)

+) Ta có:

\(B = 3\sqrt {20} - 20\sqrt {\frac{1}{5}} - \frac{4}{{\sqrt 5 + \sqrt 3 }}\)\( = 3.2\sqrt 5 - 20.\frac{{\sqrt 5 }}{5} - \frac{{4\left( {\sqrt 5 - \sqrt 3 } \right)}}{{\left( {\sqrt 5 + \sqrt 3 } \right)\left( {\sqrt 5 - \sqrt 3 } \right)}}\)

\(B = 6\sqrt 5 - 4\sqrt 5 - \frac{{4\left( {\sqrt 5 - \sqrt 3 } \right)}}{{5 - 3}}\)\( = 2\sqrt 5 - 2\sqrt 5 + 2\sqrt 3 = 2\sqrt 3 \).

Bài 2(VD):

Phương pháp

a) Thay \(x = 9\) vào \(A\) và tính giá trị.

b) Qui đồng, khử mẫu và rút gọn.

c) Tính \(P = AB\) và xét dấu của hiệu \(P - 2\).

Cách giải:

a) Tính giá trị của biểu thức \(A\) khi \(x = 9\).

Điều kiện : \(x \ge 0,\,\,\,x \ne 1.\)

Thay \(x = 9\) (tmđk) vào biểu thức \(A\), ta có : \(A = \frac{{2\sqrt 9 - 4}}{{\sqrt 9 - 1}} = \frac{{2.3 - 4}}{{3 - 1}} = \frac{2}{2} = 1\)

Vậy với \(x = 9\) thì \(A = 1.\)

b) Rút gọn \(B\).

Điều kiện : \(x \ge 0,\,\,\,x \ne 1.\)

\(\begin{array}{l}B = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} + \frac{{6\sqrt x - 4}}{{1 - x}}\\\,\,\,\, = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{3}{{\sqrt x + 1}} - \frac{{6\sqrt x - 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\\,\,\, = \frac{{\sqrt x \left( {\sqrt x + 1} \right) + 3\left( {\sqrt x - 1} \right) - 6\sqrt x + 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\\,\,\, = \frac{{x + \sqrt x + 3\sqrt x - 3 - 6\sqrt x + 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\\,\,\, = \frac{{x - 2\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\\,\,\, = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}.\end{array}\)

Vậy \(B = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}\) với \(x \ge 0;\,\,x \ne 1\).

c) Đặt \(P = A.B\). So sánh giá trị của \(P\) với \(2\).

Điều kiện : \(x \ge 0,\,\,\,x \ne 1.\)

Có \(P = A.B = \frac{{2\sqrt x - 4}}{{\sqrt x - 1}}.\frac{{\sqrt x - 1}}{{\sqrt x + 1}} = \frac{{2\sqrt x - 4}}{{\sqrt x + 1}}\)

Xét \(P - 2 = \frac{{2\sqrt x - 4}}{{\sqrt x + 1}} - 2\)\( = \frac{{2\sqrt x - 4 - 2\sqrt x - 2}}{{\sqrt x + 1}} = \frac{{ - 6}}{{\sqrt x + 1}}\)

Vì \( - 6 < 0;\,\,\sqrt x + 1 \ge 0\) với mọi \(x \ge 0;\,\,x \ne 1\)

\( \Rightarrow \frac{{ - 6}}{{\sqrt x + 1}} < 0\) \( \Rightarrow P - 2 < 0 \Rightarrow P < 2\).

Vậy \(P < 2\).

Bài 3(VD):

Phương pháp

a) Đường thẳng \(d//d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\).

b) Cho lần lượt \(x = 0,y = 0\) tìm tọa độ các điểm đi qua và vẽ đồ thị.

c) Tìm tọa độ \(A,B\).

Để \(\Delta OAB\) vuông cân tại\(O\)\( \Rightarrow OA = OB\)

Cách giải:

a) Tìm \(m\) để đường thẳng \(\left( d \right)\) song song với đường thẳng \(y = 2x + 5\).

Đường thẳng \(\left( d \right)\) song song với đường thẳng \(y = 2x + 5\)

 \( \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 1 = 2\\ - 4 \ne 5\end{array} \right. \Leftrightarrow m = 3\).

Vậy \(m = 3\) thì thỏa mãn bài toán.

b) Vẽ đồ thị hàm số trên với \(m\) tìm được ở câu a.

Với \(m = 3\), ta có : \(\left( d \right):\,\,y = 2x - 4\).

Cho \(x = 0\) ta được \(y = 2.0 - 4 = - 4\) nên \(M\left( {0; - 4} \right)\).

Cho \(y = 0 \Rightarrow 0 = 2x - 4 \Leftrightarrow x = 2\) nên \(N\left( {2;0} \right)\).

Đồ thị hàm số là đường thẳng \(\left( d \right)\) đi qua hai điểm \(\left( {0; - 4} \right)\) và \(\left( {2;0} \right)\)

Đề số 18 - Đề thi vào lớp 10 môn Toán 2

c) Đường thẳng \(\left( d \right)\) cắt trục \(Ox\) tại \(A\), cắt trục \(Oy\) tại \(B\). Tìm \(m\) để tam giác \(OAB\) vuông cân.

\(\left( d \right)\) cắt hai trục \(Ox;Oy\) tại \(A,\,\,B\) thì \(m - 1 \ne 0 \Leftrightarrow m \ne 1\).

Cho \(x = 0 \Rightarrow y = - 4\)\( \Rightarrow B\left( {0; - 4} \right) \Rightarrow OB = \left| { - 4} \right| = 4\).

Cho \(y = 0 \Rightarrow x = \frac{4}{{m - 1}}\)\( \Rightarrow A\left( {\frac{4}{{m - 1}};0} \right) \Rightarrow OA = \frac{4}{{\left| {m - 1} \right|}}\)

Để \(\Delta OAB\) vuông cân tại\(O\)\( \Rightarrow OA = OB\)

\( \Leftrightarrow \frac{4}{{\left| {m - 1} \right|}} = 4 \Leftrightarrow \left| {m - 1} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\,\,\,\left( {tm} \right)\)

Vậy \(m \in \left\{ {0;2} \right\}\).

Bài 4(TH): Phương pháp

Sử dụng giá trị lượng giác của một góc nhọn trong tam giác vuông để giải tam giác.

Cách giải:

Tính chiều cao của cây trong hình vẽ bên (Làm tròn đến chữ số thập phân thứ nhất)

Chiều cao của cây là : \(h = 1,7 + 20.\tan 35^\circ \approx 15,7m\).

Bài 5(VD):

Phương pháp

a) Gọi \(K\) là trung điểm \(OM\), chứng minh \(KO = KM = KA = KB\) dựa vào tính chất tam giác vuông.

b) Sử dụng hệ thức giữa cạnh và đường cao trong tam giác vuông \(OAM\).

c) Chứng minh \(\Delta OCE \sim \Delta OFC\left( {c.g.c} \right)\) suy ra \(\widehat {OCF} = \widehat {OEC} = 90^\circ \).

Cách giải:

Cho đường tròn \(\left( O \right)\) và một điểm \(M\) nằm ngoài đường tròn. Từ \(M\) kẻ hai tiếp tuyến \(MA,MB\) với đường tròn \(\left( O \right)\) (\(A\)\(B\)là hai tiếp điểm). Gọi \(I\) là giao điểm của \(OM\)\(AB\). Kẻ đường kính \(BC\) của \(\left( O \right)\).

Đề số 18 - Đề thi vào lớp 10 môn Toán 3

a) Chứng minh \(4\) điểm \(M,O,A,B\) cùng thuộc một đường tròn.

Gọi \(K\) là trung điểm của \(OM\)\( \Rightarrow OK = KM\).

Tam giác \(OAM\) vuông tại \(A\) nên \(AK = KM = KO = \frac{1}{2}OM\)(tính chất trung tuyến tam giác vuông).

Tam giác \(OBM\) vuông tại \(B\) nên \(BK = KM = KO = \frac{1}{2}OM\)(tính chất trung tuyến tam giác vuông).

Do đó \(OK = KM = KA = KB\).

Suy ra \(4\) điểm \(O,A,M,B\) nằm trên đường tròn tâm \(K\), đường kính \(OM\).

b) Chứng minh \(OI.OM = O{A^2}\).

Ta có : \(OA = OB\) (bán kính)

\(MA = MB\) (tính chất hai tiếp tuyến cắt nhau)

\( \Rightarrow OM\) là trung trực của \(AB\)\( \Rightarrow OM \bot AB\) tại \(I\).

\(\Delta OAM\) vuông tại \(A\) đường cao \(AI\) \( \Rightarrow OI.OM = O{A^2}\) (hệ thức giữa cạnh và đường cao).

c) Qua \(\left( O \right)\) vẽ đường thẳng vuông góc với \(MC\) tại \(E\) và cắt đường thẳng \(BA\) tại \(F\).

Xét \(\Delta OFI\) và \(\Delta OME\) có :

\(\begin{array}{l}\angle O\,\,\,chung\\\angle OIF = \angle OEM = {90^0}\end{array}\)

 (các cặp cạnh tương ứng tỉ lệ)

\(\begin{array}{l} \Rightarrow OF.OE = OI.OM = O{A^2} = O{C^2}\\ \Rightarrow \frac{{OF}}{{OC}} = \frac{{OC}}{{OE}}.\end{array}\)

Có \(\Delta OCE\) và \(\Delta OFC\)

Nên \(\angle OCF = \angle OEC = {90^0}\) (góc tương ứng)

\( \Rightarrow FC\) là tiếp tuyến của \(\left( O \right)\) (đpcm).

Bài 6 (VDC):

Phương pháp

Nhận xét : \(P = 3 - \left( {\frac{1}{{x + 1}} + \frac{1}{{y + 1}} + \frac{1}{{z + 1}}} \right)\)

Sử dụng bất đẳng thức \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{{a + b + c}}\) để đánh giá.

Cách giải:

Cho ba số dương \(x,y,z\) thay đổi nhưng luôn thỏa mãn điều kiện \(x + y + z = 1\). Tìm giá trị lớn nhất của biểu thức: \(P = \frac{x}{{x + 1}} + \frac{y}{{y + 1}} + \frac{z}{{z + 1}}\).

Ta có : \(P = 3 - \left( {\frac{1}{{x + 1}} + \frac{1}{{y + 1}} + \frac{1}{{z + 1}}} \right)\)

Mà \(\frac{1}{{x + 1}} + \frac{1}{{y + 1}} + \frac{1}{{z + 1}} \ge \frac{9}{{x + y + z + 3}} = \frac{9}{4}\)

\( \Rightarrow P \le 3 - \frac{9}{4} = \frac{3}{4}\)

Dấu xảy ra khi \(x = y = z = \frac{1}{3}\).

Vạy \(\max P = \frac{3}{4} \Leftrightarrow x = y = z = \frac{1}{3}\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề số 18 - Đề thi vào lớp 10 môn Toán đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng toán math. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Bài viết liên quan

Đề số 18 - Đề thi vào lớp 10 môn Toán: Phân tích chi tiết và hướng dẫn giải

Đề thi vào lớp 10 môn Toán là một bước ngoặt quan trọng trong quá trình học tập của học sinh. Việc làm quen với các dạng bài tập và rèn luyện kỹ năng giải quyết vấn đề là vô cùng cần thiết. Đề số 18 mà chúng ta sẽ cùng phân tích hôm nay là một ví dụ điển hình cho cấu trúc đề thi hiện nay.

Cấu trúc đề thi và các dạng bài tập thường gặp

Đề thi vào lớp 10 môn Toán thường bao gồm các phần sau:

  • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
  • Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải, chứng minh các bài toán.

Các dạng bài tập thường gặp bao gồm:

  • Đại số: Giải phương trình, hệ phương trình, bất phương trình, hàm số.
  • Hình học: Chứng minh các tính chất hình học, tính diện tích, thể tích.
  • Số học: Các bài toán về số nguyên tố, chia hết, ước chung lớn nhất, bội chung nhỏ nhất.

Phân tích chi tiết Đề số 18

Chúng ta sẽ đi vào phân tích từng câu hỏi trong Đề số 18, từ đó rút ra kinh nghiệm và phương pháp giải hiệu quả.

Câu 1: (Trắc nghiệm)

(Nội dung câu hỏi trắc nghiệm)

Lời giải: (Giải thích chi tiết cách giải câu hỏi trắc nghiệm)

Câu 2: (Tự luận)

(Nội dung câu hỏi tự luận)

Lời giải:

  1. Bước 1: (Giải thích bước 1)
  2. Bước 2: (Giải thích bước 2)
  3. Bước 3: (Giải thích bước 3)

Mẹo và kinh nghiệm làm bài thi vào lớp 10 môn Toán

Để đạt kết quả tốt trong kỳ thi vào lớp 10 môn Toán, bạn cần:

  • Nắm vững kiến thức cơ bản: Đây là nền tảng quan trọng để giải quyết mọi bài toán.
  • Luyện tập thường xuyên: Giải nhiều đề thi thử để làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải quyết vấn đề.
  • Phân bổ thời gian hợp lý: Đọc kỹ đề bài, ước lượng thời gian cần thiết cho mỗi câu hỏi và phân bổ thời gian một cách hợp lý.
  • Kiểm tra lại bài làm: Sau khi làm xong bài, hãy dành thời gian kiểm tra lại để phát hiện và sửa lỗi sai.

Tài liệu ôn thi vào lớp 10 môn Toán tại giaitoan.edu.vn

Giaitoan.edu.vn cung cấp đầy đủ các tài liệu ôn thi vào lớp 10 môn Toán, bao gồm:

  • Đề thi thử vào lớp 10 môn Toán
  • Bài giảng lý thuyết
  • Bài tập luyện tập
  • Lời giải chi tiết

Kết luận

Đề số 18 - Đề thi vào lớp 10 môn Toán là một bài thi thử hữu ích giúp học sinh chuẩn bị tốt nhất cho kỳ thi sắp tới. Hy vọng rằng, với những phân tích và hướng dẫn giải chi tiết mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn khi đối mặt với các bài toán tương tự. Chúc bạn thành công!

Dạng bàiMức độ khóLời khuyên
Trắc nghiệmDễĐọc kỹ đề, loại trừ đáp án sai
Tự luậnTrung bình - KhóTrình bày rõ ràng, logic, kiểm tra lại kết quả

Tài liệu, đề thi và đáp án Toán 9