Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Hải Dương năm 2018

Đề thi vào 10 môn Toán Hải Dương năm 2018

Đề thi vào 10 môn Toán Hải Dương năm 2018: Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Hải Dương năm 2018. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này bao gồm đề thi chính thức và đáp án chi tiết, được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm. Các em có thể sử dụng để tự học, luyện tập hoặc tham khảo ý tưởng giải bài.

Câu 1 (2 điểm): Giải phương trình và hệ phương trình:

Đề bài

    Câu 1 (2 điểm):

    Giải phương trình và hệ phương trình:

    \(1)\;\;\dfrac{{3x + 1}}{2} - x = 1\) \(2)\;\;\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right.\)

    Câu 2 (2 điểm):

    1) Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)

    2) Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)

    Câu 3 (2 điểm):

    1) Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.

    2) Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)

    Câu 4 (3 điểm):

    Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ AH vuông góc với BC (H thuộc BC), gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC.

    1) Chứng minh \(A{C^2} = CH.CB.\)

    2) Chứng minh tứ giác \(BCNM\) nội tiếp và \(AC.BM + AB.CN = AH.BC.\)

    3) Đường thẳng đi qua A cắt tia HM tại E và cắt tia đối của tia NH tại F. Chứng minh BE // CF.

    Câu 5 (1 điểm):

    Cho phương trình \(a{x^2} + bx + c = 0\;\;\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn \(0 \le {x_1} \le {x_2} \le 2.\) Tìm giá trị nhỏ nhất của biểu thức \(L = \dfrac{{3{a^2} - ab + ac}}{{5{a^2} - 3ab + {b^2}}}.\)

    Lời giải chi tiết

      Câu 1:

      Phương pháp:

      1) Quy đồng mẫu phân thức sau đó chuyển vế, đổi dấu để tìm nghiệm của phương trình.

      2) Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số.

      Cách giải:

      \(\begin{array}{l}1)\;\;\dfrac{{3x + 1}}{2} - x = 1\\ \Leftrightarrow 3x + 1 - 2x = 2\\ \Leftrightarrow x = 1.\end{array}\)

      Vậy phương trình có nghiệm duy nhất: \(x = 1.\)

      \(\begin{array}{l}2)\;\;\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + y = 17\\x - 2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + y = 17\\3x - 6y = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}7y = 14\\x = 2y + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x = 2.2. + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 2\end{array} \right..\end{array}\)

      Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\;y} \right) = \left( {5;\;2} \right).\)

      Câu 2:

      Phương pháp:

      1) Hai đường thẳng cắt nhau tại điểm \(A\) có hoành độ bằng \( - 1\) thì \( - 1\) là nghiệm của phương trình hoành độ giao điểm của hai đồ thị. Từ đó ta tìm được \(m.\)

      2) Quy đồng mẫu các phân thức sau đó biến đổi và rút gọn biểu thức.

      Cách giải:

      1) Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)

      Phương trình hoành độ giao điểm của hai đường thẳng đã cho là:

      \(\left( {{m^2} + 1} \right)x + 2m - 3 = x - 3 \Leftrightarrow {m^2}x + 2m = 0.\;\;\;\;\left( * \right)\)

      Hai đường thẳng cắt nhau tại điểm \(A\) có hoành độ bằng \( - 1\) thì \(x = - 1\) là nghiệm của phương trình (*). Khi đó:

      \(\begin{array}{l}\left( * \right) \Leftrightarrow - {m^2} + 2m = 0 \Leftrightarrow m\left( {m - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 2\end{array} \right..\end{array}\)

      Vậy \(m = 0\) hoặc \(m = 2.\)

      2) Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)

      Điều kiện: \(x > 0,\;\;x \ne 1.\)

      \(\begin{array}{l}A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\\\;\;\; = \left( {\dfrac{1}{{\sqrt x \left( {\sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{{{\left( {\sqrt x + 1} \right)}^2}}} + 1\\\;\;\; = \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 1} \right)}}.\dfrac{{{{\left( {\sqrt x + 1} \right)}^2}}}{{\sqrt x - 1}} + 1\\\;\;\; = - \dfrac{{\sqrt x + 1}}{{\sqrt x }} + 1\\\;\;\; = \dfrac{{ - \sqrt x - 1 + \sqrt x }}{{\sqrt x }} = - \dfrac{1}{{\sqrt x }}.\end{array}\)

      Câu 3:

      Phương pháp:

      1) Giải bài toán bằng cách lập phương trình:

      +) Gọi ẩn và đặt điều kiện cho ẩn.

      +) Biểu diễn các đại lượng chữa biết theo ẩn và đại lượng đã biết.

      +) Dựa vào giả thiết của bài toán để lập phương trình.

      +) Giải phương trình tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.

      2) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)

      +) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) và hệ thức bài cho để tìm giá trị của \(m.\)

      Cách giải:

      1) Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.

      Gọi vận tốc của ô tô lúc đi là \(x\;\left( {km/h} \right),\;\;\left( {x > 0} \right).\)

      Khi đó vận tốc lúc về của ô tô là: \(x + 10\;\;\left( {km/h} \right).\)

      Thời gian ô tô đi từ Hải Dương đến Hạ Long là: \(\dfrac{{100}}{x}\;\;\left( h \right).\)

      Thời gian ô tô đi từ Hạ Long về Hải Dương là: \(\dfrac{{100}}{{x + 10}}\;\;\left( h \right).\)

      Đổi \(8\) giờ \(20\) phút \( = \dfrac{{25}}{3}\) giờ.

      Theo đề bài ta có phương trình:

      \(\begin{array}{l}\;\;\;\;\dfrac{{100}}{x} + \dfrac{{25}}{3} + \dfrac{{100}}{{x + 10}} = 12\\ \Leftrightarrow \dfrac{{100}}{x} + \dfrac{{100}}{{x + 10}} - \dfrac{{11}}{3} = 0\\ \Leftrightarrow 300\left( {x + 10} \right) + 300x - 11x\left( {x + 10} \right) = 0\\ \Leftrightarrow 600x + 3000 - 11{x^2} - 110x = 0\\ \Leftrightarrow 11{x^2} - 490x - 3000 = 0\\ \Leftrightarrow \left( {x - 50} \right)\left( {11x + 60} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 50 = 0\\11x + 60 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 50\;\;\left( {tm} \right)\\x = - \dfrac{{60}}{{11}}\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)

      Vậy vận tốc của ô tô lúc đi là \(50\;km/h.\)

      2) Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)

      Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - {m^2} + 2 > 0\; \Leftrightarrow 2 > 0\;\forall m\)

      \( \Rightarrow \) Phương trình luôn có hai nghiệm \({x_1},\;\;{x_2}\) với mọi \(m.\)

      Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = {m^2} - 2\end{array} \right..\)

      Theo đề bài ta có: \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 \)

      \(\begin{array}{l} \Leftrightarrow \left| {\left( {{x_1} - {x_2}} \right)\left( {x_1^2 + {x_1}{x_2} + x_2^2} \right)} \right| = 10\sqrt 2 \\ \Leftrightarrow \left| {\left( {{x_1} - {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]} \right| = 10\sqrt 2 \\ \Leftrightarrow {\left| {\left( {{x_1} - {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]} \right|^2} = 200\\ \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2}{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]^2} = 200\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]^2} = 200\\ \Leftrightarrow \left[ {4{m^2} - 4\left( {{m^2} - 2} \right)} \right]{\left[ {4{m^2} - {m^2} + 2} \right]^2} = 200\\ \Leftrightarrow 8{\left( {3{m^2} + 2} \right)^2} = 200\\ \Leftrightarrow {\left( {3{m^2} + 2} \right)^2} = 25\\ \Leftrightarrow 3{m^2} + 2 = 5\;\;\;\left( {do\;\;3{m^2} + 2 > 0\;\;\forall m} \right)\\ \Leftrightarrow {m^2} = 1\\ \Leftrightarrow m = \pm 1.\end{array}\)

      Vậy \(m = \pm 1\) thỏa mãn bài toán.

      Câu 4:

      Phương pháp:

      a) Áp dụng hệ thức lượng trong tam giác vuông.

      b) Chứng minh tam giác đồng dạng.

      c)

      Cách giải:

      Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ AH vuông góc với BC (H thuộc BC), gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC.

      Đề thi vào 10 môn Toán Hải Dương năm 2018 1 1

      1) Chứng minh \(A{C^2} = CH.CB.\)

      Xét đường tròn ngoại tiếp tam giác ABC có đường kính BC ta có:

      \(\widehat {BAC}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {BAC} = {90^0} \Rightarrow \) \(\Delta ABC\) vuông tại \(A.\)

      Xét tam giác \(ABC\) có đường cao ta có:

      \(A{C^2} = CH.CB\) (hệ thức lượng trong tam giác vuông). (đpcm)

      2) Chứng minh tứ giác \(BCNM\) nội tiếp và \(AC.BM + AB.CN = AH.BC.\)

      +) Ta có \(ANHM\) là hình chữ nhật do có 3 góc vuông.

      \( \Rightarrow AN//MH,\;\;AM//HN.\)

      \( \Rightarrow \widehat {MAH} = \widehat {AMN}\) (tính chất).

      Lại có \(\widehat {ABH} = {90^0} - \widehat {BAH}\\\widehat {ANM} = {90^0} - \widehat {AMN}\\ \Rightarrow \widehat {ABH} = \widehat {ANM}\;\;hay\;\;\widehat {MBC} = \widehat {ANM}\) 

      Xét tứ giác \(BCNM\) ta có: \(\widehat {MBC} = \widehat {ANM}\;\;\left( {cmt} \right)\)

      \( \Rightarrow BMNC\) là tứ giác nội tiếp (góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối diện).

      +) Xét \(\Delta BMH\) và \(\Delta AHC\) ta có:

      \(\widehat {MBH} = \widehat {HAC}\;\;\)(cùng phụ với \(\widehat {ACH}\))

      \(\begin{array}{l}\widehat {BMH} = \widehat {AHC} = {90^0}\\ \Rightarrow \Delta BMH \sim \Delta AHC\;\;\left( {g - g} \right)\\ \Rightarrow \dfrac{{BM}}{{AH}} = \dfrac{{BH}}{{AC}} \Leftrightarrow AC.BM = AH.BH.\end{array}\)

      Xét \(\Delta CNH\) và \(\Delta BAH\) ta có:

      \(\widehat {NCH} = \widehat {BAH}\) (cùng phụ với \(\widehat {ABH}\))

      \(\begin{array}{l}\widehat {CNH} = \widehat {AHB} = {90^0}\\ \Rightarrow \Delta CNH \sim \Delta AHB\left( {g - g} \right)\\ \Rightarrow \dfrac{{CN}}{{AH}} = \dfrac{{CH}}{{AB}} \Rightarrow AB.CN = AH.CH.\\ \Rightarrow AC.BM + AB.CN = AH.BH + AH.CH = AH\left( {BH.CH} \right) = AH.BC\;\;\left( {dpcm} \right)\end{array}\)

      3) Đường thẳng đi qua A cắt tia HM tại E và cắt tia đối của tia NH tại F. Chứng minh BE // CF.

      Ta có :

      \( \Rightarrow \dfrac{{AN}}{{ME}} = \dfrac{{NF}}{{AM}} \Rightarrow AN.AM = NF.ME\,\,\left( 1 \right)\)

      Lại có :

      Mặt khác \(AM.AN = MH.NH\,\,\left( {AM = NH;AN = MH} \right)\,\,\,\left( 3 \right)\)

      Từ (1) , (2), (3) suy ra \(NF.ME = BM.NC \Rightarrow \dfrac{{NF}}{{NC}} = \dfrac{{BM}}{{ME}} \Rightarrow \dfrac{{ME}}{{NC}} = \dfrac{{BM}}{{NF}}\)

      Mà \(\widehat {BME} = \widehat {CNF} = {90^0}\)

      Suy ra \(\Delta BME \sim \Delta FNC\left( {c - g - c} \right) \Rightarrow \widehat {CFN} = \widehat {EBM}\)

      Ta lại có \(\widehat {NFA} = \widehat {MEA}\left( {Do\,\,AB\parallel HF} \right)\)

      Nên ta có : \(\begin{array}{l}\widehat {CFE} + \widehat {BEF} = \widehat {CFN} + \widehat {NFA} + \widehat {BEF} = \widehat {EBM} + \widehat {MAE} + \widehat {BEF}\\ \Rightarrow \widehat {CFE} + \widehat {BEF} = \widehat {EBA} + \widehat {BAE} + \widehat {BEF} = {180^0}\end{array}\)

      (Theo định lý tổng ba góc trong tam giác EBA).

      Vậy BE//CF

      Câu 5:

      Cách giải:

      Phương trình có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn \(0 \le {x_1} \le {x_2} \le 2\)

      \( \Leftrightarrow \left\{ \begin{array}{l}\Delta \ge 0\\af\left( 0 \right) \ge 0\\af\left( 2 \right) \ge 0\\\dfrac{S}{2} > 0\\\dfrac{S}{2} < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} - 4ac > 0\\ac \ge 0\\a\left( {4a + 2b + c} \right) \ge 0\\ - \dfrac{b}{{2a}} > 0\\ - \dfrac{b}{{2a}} < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} \ge 4ac\\ac \ge 0\\a\left( {4a + 2b + c} \right) \ge 0\\\dfrac{b}{{2a}} < 0\\\dfrac{{4a + b}}{{2a}} > 0\end{array} \right..\)

      Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right..\)

      Theo đề bài ta có:

      \(\begin{array}{l}L = \dfrac{{3{a^2} - ab + ac}}{{5{a^2} - 3ab + {b^2}}} = \dfrac{{3 - \dfrac{b}{a} + \dfrac{c}{a}}}{{5 - 3.\dfrac{b}{a} + {{\left( {\dfrac{b}{a}} \right)}^2}}}\;\;\left( {do\;\;a \ne 0} \right)\\\;\; = \dfrac{{3 + \left( {{x_1} + {x_2}} \right) + {x_1}{x_2}}}{{5 + 3\left( {{x_1} + {x_2}} \right) + {{\left( {{x_1} + {x_2}} \right)}^2}}}\;\;\;\left( {L > 0\;\;\forall \;0 \le {x_1} \le {x_2} \le 2} \right)\\\;\; = \dfrac{{3 + {x_1} + {x_2} + {x_1}{x_2}}}{{5 + 3{x_1} + 3{x_2} + x_1^2 + x_2^2 + 2{x_1}{x_2}}}.\\ \Rightarrow \dfrac{1}{L} = \dfrac{{5 + 3{x_1} + 3{x_2} + x_1^2 + x_2^2 + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}.\end{array}\)

      Vì \(0 \le {x_1} \le {x_2} \le 2 \Rightarrow \left\{ \begin{array}{l}x_1^2 \le 2{x_1}\\x_2^2 \le 2{x_2}\\{x_1} - 2 \le 0\\{x_2} - 2 \le 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x_1^2 + x_2^2 \le 2{x_1} + 2{x_2}\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right..\)

      \(\begin{array}{l} \Rightarrow \dfrac{1}{L} \le \dfrac{{5 + 3{x_1} + 3{x_2} + 2{x_1} + 2{x_2} + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}} = \dfrac{{5 + 5{x_1} + 5{x_2} + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{3{x_1}{x_2} + 3{x_1} + 3{x_2} + 9 - {x_1}{x_2} + 2{x_1} + 2{x_2} - 4}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{3\left( {3 + {x_1} + {x_2} + {x_1}{x_2}} \right) - \left( {{x_2} - 2} \right){x_1} + 2\left( {{x_2} - 2} \right)}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = 3 - \dfrac{{\left( {{x_2} - 2} \right)\left( {{x_1} - 2} \right)}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}} \le 3\;\;\;\left( {do\;\;\left( {{x_2} - 2} \right)\left( {{x_1} - 2} \right) \ge 0} \right)\\ \Rightarrow 0 \le \dfrac{1}{L} \le 3 \Leftrightarrow 3L \ge 1 \Leftrightarrow L \ge \dfrac{1}{3}\\ \Rightarrow Min\;L = \dfrac{1}{3}.\end{array}\)

      Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x_1^2 = 2{x_1}\\x_2^2 = 2{x_2}\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1}\left( {{x_1} - 2} \right) = 0\\{x_2}\left( {{x_2} - 2} \right) = 0\\\left[ \begin{array}{l}{x_1} - 2 = 0\\{x_2} - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right.\)

      \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_1} = 0\\{x_1} = 2\end{array} \right.\\\left[ \begin{array}{l}{x_2} = 0\\{x_2} = 2\end{array} \right.\\\left[ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x_1} = 0\\{x_2} = 2\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 2\\{x_2} = 0\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right..\)

      Vậy \(Min\;L = \dfrac{1}{3}\;\;khi\;\;\left( {{x_1};\;{x_2}} \right) = \left\{ {\left( {0;\;2} \right),\;\left( {2;\;0} \right),\;\left( {2;\;2} \right)} \right\}.\)

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải chi tiết
      • Tải về

      Câu 1 (2 điểm):

      Giải phương trình và hệ phương trình:

      \(1)\;\;\dfrac{{3x + 1}}{2} - x = 1\) \(2)\;\;\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right.\)

      Câu 2 (2 điểm):

      1) Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)

      2) Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)

      Câu 3 (2 điểm):

      1) Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.

      2) Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)

      Câu 4 (3 điểm):

      Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ AH vuông góc với BC (H thuộc BC), gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC.

      1) Chứng minh \(A{C^2} = CH.CB.\)

      2) Chứng minh tứ giác \(BCNM\) nội tiếp và \(AC.BM + AB.CN = AH.BC.\)

      3) Đường thẳng đi qua A cắt tia HM tại E và cắt tia đối của tia NH tại F. Chứng minh BE // CF.

      Câu 5 (1 điểm):

      Cho phương trình \(a{x^2} + bx + c = 0\;\;\left( {a \ne 0} \right)\) có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn \(0 \le {x_1} \le {x_2} \le 2.\) Tìm giá trị nhỏ nhất của biểu thức \(L = \dfrac{{3{a^2} - ab + ac}}{{5{a^2} - 3ab + {b^2}}}.\)

      Câu 1:

      Phương pháp:

      1) Quy đồng mẫu phân thức sau đó chuyển vế, đổi dấu để tìm nghiệm của phương trình.

      2) Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số.

      Cách giải:

      \(\begin{array}{l}1)\;\;\dfrac{{3x + 1}}{2} - x = 1\\ \Leftrightarrow 3x + 1 - 2x = 2\\ \Leftrightarrow x = 1.\end{array}\)

      Vậy phương trình có nghiệm duy nhất: \(x = 1.\)

      \(\begin{array}{l}2)\;\;\left\{ \begin{array}{l}3x = 17 - y\\x - 2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + y = 17\\x - 2y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + y = 17\\3x - 6y = 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}7y = 14\\x = 2y + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x = 2.2. + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 2\end{array} \right..\end{array}\)

      Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\;y} \right) = \left( {5;\;2} \right).\)

      Câu 2:

      Phương pháp:

      1) Hai đường thẳng cắt nhau tại điểm \(A\) có hoành độ bằng \( - 1\) thì \( - 1\) là nghiệm của phương trình hoành độ giao điểm của hai đồ thị. Từ đó ta tìm được \(m.\)

      2) Quy đồng mẫu các phân thức sau đó biến đổi và rút gọn biểu thức.

      Cách giải:

      1) Tìm \(m\) để phương trình \({d_1}:\;y = \left( {{m^2} + 1} \right)x + 2m - 3\) cắt đường thẳng \(d:\;y = x - 3\) tại điểm \(A\) có hoành độ bằng \( - 1.\)

      Phương trình hoành độ giao điểm của hai đường thẳng đã cho là:

      \(\left( {{m^2} + 1} \right)x + 2m - 3 = x - 3 \Leftrightarrow {m^2}x + 2m = 0.\;\;\;\;\left( * \right)\)

      Hai đường thẳng cắt nhau tại điểm \(A\) có hoành độ bằng \( - 1\) thì \(x = - 1\) là nghiệm của phương trình (*). Khi đó:

      \(\begin{array}{l}\left( * \right) \Leftrightarrow - {m^2} + 2m = 0 \Leftrightarrow m\left( {m - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = 0\\m - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 2\end{array} \right..\end{array}\)

      Vậy \(m = 0\) hoặc \(m = 2.\)

      2) Rút gọn biểu thức \(A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\) với \(x > 0,\;\;x \ne 1.\)

      Điều kiện: \(x > 0,\;\;x \ne 1.\)

      \(\begin{array}{l}A = \left( {\dfrac{1}{{x + \sqrt x }} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{x + 2\sqrt x + 1}} + 1\\\;\;\; = \left( {\dfrac{1}{{\sqrt x \left( {\sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x - 1}}{{{{\left( {\sqrt x + 1} \right)}^2}}} + 1\\\;\;\; = \dfrac{{1 - \sqrt x }}{{\sqrt x \left( {\sqrt x + 1} \right)}}.\dfrac{{{{\left( {\sqrt x + 1} \right)}^2}}}{{\sqrt x - 1}} + 1\\\;\;\; = - \dfrac{{\sqrt x + 1}}{{\sqrt x }} + 1\\\;\;\; = \dfrac{{ - \sqrt x - 1 + \sqrt x }}{{\sqrt x }} = - \dfrac{1}{{\sqrt x }}.\end{array}\)

      Câu 3:

      Phương pháp:

      1) Giải bài toán bằng cách lập phương trình:

      +) Gọi ẩn và đặt điều kiện cho ẩn.

      +) Biểu diễn các đại lượng chữa biết theo ẩn và đại lượng đã biết.

      +) Dựa vào giả thiết của bài toán để lập phương trình.

      +) Giải phương trình tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.

      2) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0.\)

      +) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) và hệ thức bài cho để tìm giá trị của \(m.\)

      Cách giải:

      1) Quãng đường Hải Dương – Hạ Long dài 100km. Một ô tô đi từ Hải Dương đến Hạ Long rồi nghỉ ở đó 8 giờ 20 phút, sau đó trở về Hải Dương hết tất cả 12 giờ. Tính vận tốc của ô tô lúc đi, biết vận tốc ô tô lúc về nhanh hơn vận tốc ô tô lúc đi 10 km/h.

      Gọi vận tốc của ô tô lúc đi là \(x\;\left( {km/h} \right),\;\;\left( {x > 0} \right).\)

      Khi đó vận tốc lúc về của ô tô là: \(x + 10\;\;\left( {km/h} \right).\)

      Thời gian ô tô đi từ Hải Dương đến Hạ Long là: \(\dfrac{{100}}{x}\;\;\left( h \right).\)

      Thời gian ô tô đi từ Hạ Long về Hải Dương là: \(\dfrac{{100}}{{x + 10}}\;\;\left( h \right).\)

      Đổi \(8\) giờ \(20\) phút \( = \dfrac{{25}}{3}\) giờ.

      Theo đề bài ta có phương trình:

      \(\begin{array}{l}\;\;\;\;\dfrac{{100}}{x} + \dfrac{{25}}{3} + \dfrac{{100}}{{x + 10}} = 12\\ \Leftrightarrow \dfrac{{100}}{x} + \dfrac{{100}}{{x + 10}} - \dfrac{{11}}{3} = 0\\ \Leftrightarrow 300\left( {x + 10} \right) + 300x - 11x\left( {x + 10} \right) = 0\\ \Leftrightarrow 600x + 3000 - 11{x^2} - 110x = 0\\ \Leftrightarrow 11{x^2} - 490x - 3000 = 0\\ \Leftrightarrow \left( {x - 50} \right)\left( {11x + 60} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 50 = 0\\11x + 60 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 50\;\;\left( {tm} \right)\\x = - \dfrac{{60}}{{11}}\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)

      Vậy vận tốc của ô tô lúc đi là \(50\;km/h.\)

      2) Tìm \(m\) để phương trình \({x^2} - 2mx + {m^2} - 2 = 0\) (x là ẩn, m là tham số) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 .\)

      Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - {m^2} + 2 > 0\; \Leftrightarrow 2 > 0\;\forall m\)

      \( \Rightarrow \) Phương trình luôn có hai nghiệm \({x_1},\;\;{x_2}\) với mọi \(m.\)

      Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = {m^2} - 2\end{array} \right..\)

      Theo đề bài ta có: \(\left| {x_1^3 - x_2^3} \right| = 10\sqrt 2 \)

      \(\begin{array}{l} \Leftrightarrow \left| {\left( {{x_1} - {x_2}} \right)\left( {x_1^2 + {x_1}{x_2} + x_2^2} \right)} \right| = 10\sqrt 2 \\ \Leftrightarrow \left| {\left( {{x_1} - {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]} \right| = 10\sqrt 2 \\ \Leftrightarrow {\left| {\left( {{x_1} - {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]} \right|^2} = 200\\ \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2}{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]^2} = 200\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]{\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - {x_1}{x_2}} \right]^2} = 200\\ \Leftrightarrow \left[ {4{m^2} - 4\left( {{m^2} - 2} \right)} \right]{\left[ {4{m^2} - {m^2} + 2} \right]^2} = 200\\ \Leftrightarrow 8{\left( {3{m^2} + 2} \right)^2} = 200\\ \Leftrightarrow {\left( {3{m^2} + 2} \right)^2} = 25\\ \Leftrightarrow 3{m^2} + 2 = 5\;\;\;\left( {do\;\;3{m^2} + 2 > 0\;\;\forall m} \right)\\ \Leftrightarrow {m^2} = 1\\ \Leftrightarrow m = \pm 1.\end{array}\)

      Vậy \(m = \pm 1\) thỏa mãn bài toán.

      Câu 4:

      Phương pháp:

      a) Áp dụng hệ thức lượng trong tam giác vuông.

      b) Chứng minh tam giác đồng dạng.

      c)

      Cách giải:

      Cho tam giác ABC nội tiếp đường tròn tâm O đường kính BC. Kẻ AH vuông góc với BC (H thuộc BC), gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC.

      Đề thi vào 10 môn Toán Hải Dương năm 2018 1

      1) Chứng minh \(A{C^2} = CH.CB.\)

      Xét đường tròn ngoại tiếp tam giác ABC có đường kính BC ta có:

      \(\widehat {BAC}\) là góc nội tiếp chắn nửa đường tròn \( \Rightarrow \widehat {BAC} = {90^0} \Rightarrow \) \(\Delta ABC\) vuông tại \(A.\)

      Xét tam giác \(ABC\) có đường cao ta có:

      \(A{C^2} = CH.CB\) (hệ thức lượng trong tam giác vuông). (đpcm)

      2) Chứng minh tứ giác \(BCNM\) nội tiếp và \(AC.BM + AB.CN = AH.BC.\)

      +) Ta có \(ANHM\) là hình chữ nhật do có 3 góc vuông.

      \( \Rightarrow AN//MH,\;\;AM//HN.\)

      \( \Rightarrow \widehat {MAH} = \widehat {AMN}\) (tính chất).

      Lại có \(\widehat {ABH} = {90^0} - \widehat {BAH}\\\widehat {ANM} = {90^0} - \widehat {AMN}\\ \Rightarrow \widehat {ABH} = \widehat {ANM}\;\;hay\;\;\widehat {MBC} = \widehat {ANM}\) 

      Xét tứ giác \(BCNM\) ta có: \(\widehat {MBC} = \widehat {ANM}\;\;\left( {cmt} \right)\)

      \( \Rightarrow BMNC\) là tứ giác nội tiếp (góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối diện).

      +) Xét \(\Delta BMH\) và \(\Delta AHC\) ta có:

      \(\widehat {MBH} = \widehat {HAC}\;\;\)(cùng phụ với \(\widehat {ACH}\))

      \(\begin{array}{l}\widehat {BMH} = \widehat {AHC} = {90^0}\\ \Rightarrow \Delta BMH \sim \Delta AHC\;\;\left( {g - g} \right)\\ \Rightarrow \dfrac{{BM}}{{AH}} = \dfrac{{BH}}{{AC}} \Leftrightarrow AC.BM = AH.BH.\end{array}\)

      Xét \(\Delta CNH\) và \(\Delta BAH\) ta có:

      \(\widehat {NCH} = \widehat {BAH}\) (cùng phụ với \(\widehat {ABH}\))

      \(\begin{array}{l}\widehat {CNH} = \widehat {AHB} = {90^0}\\ \Rightarrow \Delta CNH \sim \Delta AHB\left( {g - g} \right)\\ \Rightarrow \dfrac{{CN}}{{AH}} = \dfrac{{CH}}{{AB}} \Rightarrow AB.CN = AH.CH.\\ \Rightarrow AC.BM + AB.CN = AH.BH + AH.CH = AH\left( {BH.CH} \right) = AH.BC\;\;\left( {dpcm} \right)\end{array}\)

      3) Đường thẳng đi qua A cắt tia HM tại E và cắt tia đối của tia NH tại F. Chứng minh BE // CF.

      Ta có :

      \( \Rightarrow \dfrac{{AN}}{{ME}} = \dfrac{{NF}}{{AM}} \Rightarrow AN.AM = NF.ME\,\,\left( 1 \right)\)

      Lại có :

      Mặt khác \(AM.AN = MH.NH\,\,\left( {AM = NH;AN = MH} \right)\,\,\,\left( 3 \right)\)

      Từ (1) , (2), (3) suy ra \(NF.ME = BM.NC \Rightarrow \dfrac{{NF}}{{NC}} = \dfrac{{BM}}{{ME}} \Rightarrow \dfrac{{ME}}{{NC}} = \dfrac{{BM}}{{NF}}\)

      Mà \(\widehat {BME} = \widehat {CNF} = {90^0}\)

      Suy ra \(\Delta BME \sim \Delta FNC\left( {c - g - c} \right) \Rightarrow \widehat {CFN} = \widehat {EBM}\)

      Ta lại có \(\widehat {NFA} = \widehat {MEA}\left( {Do\,\,AB\parallel HF} \right)\)

      Nên ta có : \(\begin{array}{l}\widehat {CFE} + \widehat {BEF} = \widehat {CFN} + \widehat {NFA} + \widehat {BEF} = \widehat {EBM} + \widehat {MAE} + \widehat {BEF}\\ \Rightarrow \widehat {CFE} + \widehat {BEF} = \widehat {EBA} + \widehat {BAE} + \widehat {BEF} = {180^0}\end{array}\)

      (Theo định lý tổng ba góc trong tam giác EBA).

      Vậy BE//CF

      Câu 5:

      Cách giải:

      Phương trình có hai nghiệm \({x_1},\;{x_2}\) thỏa mãn \(0 \le {x_1} \le {x_2} \le 2\)

      \( \Leftrightarrow \left\{ \begin{array}{l}\Delta \ge 0\\af\left( 0 \right) \ge 0\\af\left( 2 \right) \ge 0\\\dfrac{S}{2} > 0\\\dfrac{S}{2} < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} - 4ac > 0\\ac \ge 0\\a\left( {4a + 2b + c} \right) \ge 0\\ - \dfrac{b}{{2a}} > 0\\ - \dfrac{b}{{2a}} < 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} \ge 4ac\\ac \ge 0\\a\left( {4a + 2b + c} \right) \ge 0\\\dfrac{b}{{2a}} < 0\\\dfrac{{4a + b}}{{2a}} > 0\end{array} \right..\)

      Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right..\)

      Theo đề bài ta có:

      \(\begin{array}{l}L = \dfrac{{3{a^2} - ab + ac}}{{5{a^2} - 3ab + {b^2}}} = \dfrac{{3 - \dfrac{b}{a} + \dfrac{c}{a}}}{{5 - 3.\dfrac{b}{a} + {{\left( {\dfrac{b}{a}} \right)}^2}}}\;\;\left( {do\;\;a \ne 0} \right)\\\;\; = \dfrac{{3 + \left( {{x_1} + {x_2}} \right) + {x_1}{x_2}}}{{5 + 3\left( {{x_1} + {x_2}} \right) + {{\left( {{x_1} + {x_2}} \right)}^2}}}\;\;\;\left( {L > 0\;\;\forall \;0 \le {x_1} \le {x_2} \le 2} \right)\\\;\; = \dfrac{{3 + {x_1} + {x_2} + {x_1}{x_2}}}{{5 + 3{x_1} + 3{x_2} + x_1^2 + x_2^2 + 2{x_1}{x_2}}}.\\ \Rightarrow \dfrac{1}{L} = \dfrac{{5 + 3{x_1} + 3{x_2} + x_1^2 + x_2^2 + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}.\end{array}\)

      Vì \(0 \le {x_1} \le {x_2} \le 2 \Rightarrow \left\{ \begin{array}{l}x_1^2 \le 2{x_1}\\x_2^2 \le 2{x_2}\\{x_1} - 2 \le 0\\{x_2} - 2 \le 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x_1^2 + x_2^2 \le 2{x_1} + 2{x_2}\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right..\)

      \(\begin{array}{l} \Rightarrow \dfrac{1}{L} \le \dfrac{{5 + 3{x_1} + 3{x_2} + 2{x_1} + 2{x_2} + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}} = \dfrac{{5 + 5{x_1} + 5{x_2} + 2{x_1}{x_2}}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{3{x_1}{x_2} + 3{x_1} + 3{x_2} + 9 - {x_1}{x_2} + 2{x_1} + 2{x_2} - 4}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = \dfrac{{3\left( {3 + {x_1} + {x_2} + {x_1}{x_2}} \right) - \left( {{x_2} - 2} \right){x_1} + 2\left( {{x_2} - 2} \right)}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}}\\\;\;\;\;\;\;\; = 3 - \dfrac{{\left( {{x_2} - 2} \right)\left( {{x_1} - 2} \right)}}{{3 + {x_1} + {x_2} + {x_1}{x_2}}} \le 3\;\;\;\left( {do\;\;\left( {{x_2} - 2} \right)\left( {{x_1} - 2} \right) \ge 0} \right)\\ \Rightarrow 0 \le \dfrac{1}{L} \le 3 \Leftrightarrow 3L \ge 1 \Leftrightarrow L \ge \dfrac{1}{3}\\ \Rightarrow Min\;L = \dfrac{1}{3}.\end{array}\)

      Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x_1^2 = 2{x_1}\\x_2^2 = 2{x_2}\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1}\left( {{x_1} - 2} \right) = 0\\{x_2}\left( {{x_2} - 2} \right) = 0\\\left[ \begin{array}{l}{x_1} - 2 = 0\\{x_2} - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right.\)

      \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_1} = 0\\{x_1} = 2\end{array} \right.\\\left[ \begin{array}{l}{x_2} = 0\\{x_2} = 2\end{array} \right.\\\left[ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x_1} = 0\\{x_2} = 2\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 2\\{x_2} = 0\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 2\\{x_2} = 2\end{array} \right.\end{array} \right..\)

      Vậy \(Min\;L = \dfrac{1}{3}\;\;khi\;\;\left( {{x_1};\;{x_2}} \right) = \left\{ {\left( {0;\;2} \right),\;\left( {2;\;0} \right),\;\left( {2;\;2} \right)} \right\}.\)

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Hải Dương năm 2018 đặc sắc thuộc chuyên mục toán lớp 9 trên nền tảng học toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Hải Dương năm 2018: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 môn Toán tại Hải Dương năm 2018 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Đề thi năm đó đã đánh giá một cách toàn diện kiến thức và kỹ năng của học sinh, bao gồm các chủ đề chính như Đại số, Hình học, và các bài toán thực tế ứng dụng.

      Cấu trúc đề thi vào 10 môn Toán Hải Dương 2018

      Đề thi thường bao gồm các dạng bài sau:

      • Bài toán Đại số: Các bài toán về phương trình, hệ phương trình, bất phương trình, hàm số, và các bài toán liên quan đến số thực.
      • Bài toán Hình học: Các bài toán về tam giác, tứ giác, đường tròn, và các bài toán chứng minh hình học.
      • Bài toán Thực tế: Các bài toán ứng dụng kiến thức toán học vào giải quyết các vấn đề thực tế.

      Phân tích một số câu hỏi điển hình trong đề thi

      Một trong những câu hỏi thường gặp trong đề thi là các bài toán về phương trình bậc hai. Để giải quyết loại bài này, học sinh cần nắm vững các công thức nghiệm và các phương pháp giải phương trình bậc hai. Ví dụ:

      Giải phương trình: x2 - 5x + 6 = 0

      Ta có thể giải phương trình này bằng cách sử dụng công thức nghiệm:

      x = (-b ± √(b2 - 4ac)) / 2a

      Trong trường hợp này, a = 1, b = -5, và c = 6. Thay các giá trị này vào công thức, ta được:

      x = (5 ± √((-5)2 - 4 * 1 * 6)) / 2 * 1

      x = (5 ± √1) / 2

      Vậy, x1 = 3 và x2 = 2.

      Hướng dẫn ôn thi hiệu quả cho kỳ thi vào 10 môn Toán

      Để đạt kết quả tốt trong kỳ thi vào 10 môn Toán, học sinh cần có một kế hoạch ôn thi khoa học và hiệu quả. Dưới đây là một số lời khuyên:

      1. Nắm vững kiến thức cơ bản: Đảm bảo rằng các em đã hiểu rõ các khái niệm, định lý, và công thức cơ bản trong chương trình Toán lớp 9.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán và làm quen với các dạng bài thường gặp.
      3. Sử dụng tài liệu ôn thi chất lượng: Chọn các tài liệu ôn thi uy tín và được cập nhật thường xuyên.
      4. Tìm kiếm sự giúp đỡ khi cần thiết: Đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè nếu gặp khó khăn trong quá trình học tập.

      Tầm quan trọng của việc luyện đề thi vào 10

      Luyện đề thi vào 10 là một bước quan trọng trong quá trình chuẩn bị cho kỳ thi. Việc này giúp học sinh:

      • Làm quen với cấu trúc đề thi và thời gian làm bài.
      • Rèn luyện kỹ năng giải toán nhanh và chính xác.
      • Đánh giá được trình độ hiện tại và xác định những kiến thức còn yếu.

      Giaitoan.edu.vn: Nền tảng học toán online uy tín

      Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp các khóa học chất lượng cao, bài giảng chi tiết, và đội ngũ giáo viên giàu kinh nghiệm. Chúng tôi cam kết giúp các em học sinh đạt kết quả tốt nhất trong kỳ thi vào 10 môn Toán.

      Kết luận

      Đề thi vào 10 môn Toán Hải Dương năm 2018 là một tài liệu tham khảo hữu ích cho các em học sinh đang chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Hy vọng rằng những phân tích và hướng dẫn giải trong bài viết này sẽ giúp các em tự tin hơn và đạt kết quả tốt nhất.

      Tài liệu, đề thi và đáp án Toán 9