Logo Header
  1. Môn Toán
  2. Đề số 15 - Đề thi vào lớp 10 môn Toán

Đề số 15 - Đề thi vào lớp 10 môn Toán

Đề số 15 - Đề thi vào lớp 10 môn Toán tại giaitoan.edu.vn

Chào mừng bạn đến với bài viết cung cấp Đề số 15 - Đề thi vào lớp 10 môn Toán. Đây là một trong những đề thi thử quan trọng giúp học sinh làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp đầy đủ các đề thi thử vào lớp 10 môn Toán, cùng với lời giải chi tiết và hướng dẫn giải bài tập.

Đề thi vào lớp 10 môn Toán - Đề số 15 có đáp án và lời giải chi tiết

Đề bài

Bài 1. (3,0 điểm) Giải các phương trình và hệ phương trình sau đây

a. \(\sqrt 3 x - \sqrt 2 x = \sqrt 3 + \sqrt 2 \)

b. \(\left\{ \begin{array}{l}x + y = 101\\ - x + y = - 1\end{array} \right.\)

c. \({x^2} + 2\sqrt 3 x + 2 = 0\)

Bài 2. (2,0 điểm) Cho hàm số \(y = 0,5.{x^2}\) có đồ thị là Parabol (P)

a.Vẽ đồ thị (P) của hàm số đã cho

b.Xác định hệ số a; b của đường thẳng (d): \(y = ax + b\) , biết (d) cắt trục hoành tại điểm có hoành độ bằng 1 và (d) cắt (P) tại điểm có hoành độ bằng 2. Chứng tỏ (P) và (d) tiếp xúc nhau.

Bài 3. (1,5 điểm) Cho phương trình bậc hai \({x^2} - 3x + m = 0\) (m là tham số).

a.Tìm m để phương trình có nghiệm bằng \( - 2\) . Tính nghiệm còn lại ứng với m vừa tìm được.

b.Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình đã cho. Tìm giá trị nhỏ nhất của \(A = x_1^2 + x_2^2 - 3{x_1}{x_2}\)

Bài 4. (2,5 điểm). Cho tam giác đều ABC nội tiếp trong đường tròn tâm O. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA.

a.Chứng minh tứ giác BMON nội tiếp được đường tròn.

b.Kéo dài AN cắt đường tròn (O) tại G (khác A). Chứng minh ON = NG.

b.PN cắt cung nhỏ BG của đường tròn (O) tại điểm F. Tính số đo của góc \(\widehat {OFP}\) .

Bài 5 (1,0 điểm) Cầu vòm là một dạng cầu đẹp bởi hình dáng cầu được uốn lượn theo một cung tròn tạo sự hài hòa trong thiết kế cảnh quan, đặc biệt là các khu đô thị có dòng sông chảy qua, tạo được một điểm nhấn của công trình giao thông hiện đại. Một chiếc cầu vòm được thiết kế như hình vẽ bên, vòm cầu là một cung tròn AMB. Độ dài đoạn AB bằng 30m, khoảng cách từ vị trí cao nhất ở giữa vòm cầu so với sàn mặt cầu là đoạn MK có độ dài 5m. Tính chiều dài vòm cầu.

Đề số 15 - Đề thi vào lớp 10 môn Toán 1

Lời giải chi tiết

Bài 1.

a.

 \(\begin{array}{l}\sqrt 3 x - \sqrt 2 x = \sqrt 3 + \sqrt 2 \\ \Leftrightarrow \left( {\sqrt 3 - \sqrt 2 } \right)x = \sqrt 3 + \sqrt 2 \\ \Leftrightarrow x = \dfrac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}\\ \Leftrightarrow x = \dfrac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}}}{{3 - 2}}\\ \Leftrightarrow x = 5 + 2\sqrt 6 \end{array}\)

b.\(\left\{ \begin{array}{l}x + y = 101\\ - x + y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2y = 100\\x = y + 1\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}y = 50\\x = y + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 50\\x = 51\end{array} \right.\)

Vậy hệ phương trình có nghiệm là \(\left( {x;y} \right) = \left( {51;50} \right)\)

c.\({x^2} + 2\sqrt 3 x + 2 = 0\)

Ta có: \(a = 1;b' = \sqrt 3 ;c = 2\)

\(\Delta ' = {\left( {\sqrt 3 } \right)^2} - 2 = 1 > 0\)

Khi đó phương trình có hai nghiệm phân biệt là: \(\left[ \begin{array}{l}{x_1} = - \sqrt 3 - 1\\{x_2} = - \sqrt 3 + 1\end{array} \right.\)

Vậy phương trình đã cho có 2 nghiệm phân biệt là: \(S = \left\{ { - \sqrt 3 - 1; - \sqrt 3 + 1} \right\}\)

Bài 2.

Cho hàm số \(y = 0,5.{x^2}\) có đồ thị là Parabol (P)

a.Vẽ đồ thị (P) của hàm số đã cho

Ta có bảng giá trị

\(x\)

-4

-2

0

2

4

\(y = 0,5{x^2}\)

8

2

0

2

8

Đồ thị hàm số (P) có hình dạng đường cong đi qua các điểm \(\left( {0;\;0} \right),\;\;\left( { - 2;\;2} \right),\,\left( { - 4;8} \right),\;\;\left( {2;\;2} \right),\,\,\left( {4;8} \right)\)

Vẽ đồ thị:

Đề số 15 - Đề thi vào lớp 10 môn Toán 2

b.Xác định hệ số a; b của đường thẳng (d): \(y = ax + b\) , biết (d) cắt trục hoành tại điểm có hoành độ bằng 1 và (d) cắt (P) tại điểm có hoành độ bằng 2. Chứng tỏ (P) và (d) tiếp xúc nhau.

Ta có: (d) cắt trục hoành tại điểm có hoành độ bằng 1 nên\(A\left( {1;0} \right)\) . Thay tọa độ của điểm A vào phương trình đường thẳng (d) ta có: \(a + b = 0\,\,\left( 1 \right)\)

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình:

\(0,5{x^2} = ax + b \Leftrightarrow 0,5{x^2} - ax + b = 0\) (*)

Theo đề ra ta có: (d) cắt (P) tại điểm có hoành độ bằng 2 nên x = 2 là nghiệm của phương trình (*)

\(0,{5.2^2} - a.2 + b = 0 \Leftrightarrow 2a - b = 2\,\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình

\(\left\{ \begin{array}{l}a + b = 0\\2a - b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3a = 2\\b = - a\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{2}{3}\\b = - \dfrac{2}{3}\end{array} \right.\)

Vậy \(a = \dfrac{2}{3};b = - \dfrac{2}{3}\) thỏa mãn yêu cầu bài toán.

Bài 3.

Cho phương trình bậc hai \({x^2} - 3x + m = 0\)(1) (m là tham số).

a. Tìm m để phương trình có nghiệm bằng \( - 2\) . Tính nghiệm còn lại ứng với m vừa tìm được.

Phương trình có nghiệm bằng \( - 2\) nên thay \(x = - 2\) vào phương trình ta được:

\({\left( { - 2} \right)^2} - 3.\left( { - 2} \right) + m = 0 \Leftrightarrow m = - 10\)

Với \(m = - 10\) phương trình (1) trở thành:

\({x^2} - 3x - 10 = 0\) (2)

Ta có: \(\Delta = {\left( { - 3} \right)^2} + 4.10 = 49 > 0\) Khi đó phương trình (2) sẽ có hai nghiệm phân biệt:

\(\left[ \begin{array}{l}{x_1} = \dfrac{{3 - 7}}{2} = - 2\\{x_2} = \dfrac{{3 + 7}}{2} = 5\end{array} \right.\)

Vậy nghiệm còn lại của phương trình đã cho khi m = -10 là x = 5.

b.Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình đã cho. Tìm giá trị nhỏ nhất của \(A = x_1^2 + x_2^2 - 3{x_1}{x_2}\)

Phương trình có hai nghiệm khi và chỉ khi: \(\Delta \ge 0 \Leftrightarrow 9 - 4m \ge 0 \Leftrightarrow m \le \dfrac{9}{4}\)

Áp dụng Viet cho phương trình (1) ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 3\\{x_1}{x_2} = m\end{array} \right.\)

Từ A ta có:

 \(\begin{array}{l}A = x_1^2 + x_2^2 - 3{x_1}{x_2}\\ = {\left( {{x_1} + {x_2}} \right)^2} - 5{x_1}{x_2}\\ = 9 - 5m\end{array}\)

Ta có:

\(m \le \dfrac{9}{4} \Rightarrow - 5m \ge - 5.\dfrac{9}{4}\)

\(\Rightarrow 9 - 5m \ge 9 - 5.\dfrac{9}{4} = - \dfrac{9}{4}\)

\(\Rightarrow A \ge \dfrac{{ - 9}}{4}\)

Vậy giá trị nhỏ nhất của A bằng \(\dfrac{{ - 9}}{4}\) dấu “=” xảy ra khi và chỉ khi: \(m = \dfrac{9}{4}\)

Bài 4.

Đề số 15 - Đề thi vào lớp 10 môn Toán 3

a) Chứng minh tứ giác BMON nội tiếp được đường tròn.

Vì \(\Delta ABC\) là tam giác đều, \(M,\;N\) lần lượt là trung điểm của \(AB,\;BC\) \( \Rightarrow \left\{ \begin{array}{l}OM \bot AB\\ON \bot BC\end{array} \right.\) \( \Rightarrow \widehat {OMB} = \widehat {ONB} = {90^0}\) (đường trung tuyến đồng thời là đường cao)

Xét tứ giác \(BMON\) ta có: \(\widehat {OMB} + \widehat {ONB} = {90^0} + {90^0} = {180^0}.\)

\( \Rightarrow BMON\) là tứ giác nội tiếp (tổng hai góc đối diện có tổng bằng \({180^0}\)).

b) Kéo dài AN cắt đường tròn (O) tại G (khác A). Chứng minh ON = NG.

Ta có \(O\) là trọng tâm tâm tam giác \(ABC\) (gt)

\( \Rightarrow ON = \dfrac{1}{2}OA = \dfrac{1}{2}R.\) (tính chất đường trung tuyến trong tam giác)

Lại có:\(OG = ON + NG\)

\(\begin{array}{l} \Rightarrow R = \dfrac{R}{2} + NG \Leftrightarrow NG = \dfrac{R}{2}.\\ \Rightarrow NO = NG = \dfrac{R}{2}.\;\;\left( {dpcm} \right)\end{array}\)

c) PN cắt cung nhỏ  của đường tròn (O) tại điểm F. Tính số đo của góc \(\widehat {OFP}\) .

Gọi \(E = OC \cap PN\) ta có \(OC \bot AB\) (do tam giác ABC đều) ;

\(NP//AB\) (do NP là đường trung bình của tam giác ABC.

\( \Rightarrow OC \bot NP\) tại E \( \Rightarrow \Delta OEF\) vuông tại E.

Xét tam giác vuông ONC có : \(O{N^2} = OE.OC\)

\(\Rightarrow OE = \dfrac{{O{N^2}}}{{OC}} = \dfrac{{{R^2}}}{{4R}} = \dfrac{R}{4}\)

Xét tam giác vuông \(OEF\) có \(\sin \widehat {OFE} = \sin \widehat {OFP} = \dfrac{{OE}}{{ON}} = \dfrac{{\dfrac{R}{4}}}{R} = \dfrac{1}{4}\)

\(\Rightarrow \widehat {OFP} = \arcsin \dfrac{1}{4} \approx {14^0}28'\)

Câu 5.

Đề số 15 - Đề thi vào lớp 10 môn Toán 4

Giả sử AMB là cung tròn của đường tròn tâm O. Vẽ đường kính MN.

M là điểm chính giữa của cung AB \( \Rightarrow OM \bot AB\) và K là trung điểm của AB

\( \Rightarrow AK = \dfrac{1}{2}AB = 15\,\left( m \right)\).

Ta có \(\widehat {MAN} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta AMN\) vuông tại A.

Áp dụng hệ thức lượng trong tam giác vuông AMN có:

\(A{K^2} = KM.KN \Leftrightarrow {15^2} = 5.KN \) \(\Leftrightarrow KN = 45\,\,\left( m \right)\)

\( \Rightarrow MN = KM + KN = 5 + 45 = 50\,\,\left( m \right)\)

\( \Rightarrow \) Bán kính đường tròn tâm O là \(R = 25m\).

Xét tam giác vuông ANK có \(\tan \widehat {ANK} = \dfrac{{AK}}{{KN}} = \dfrac{{15}}{{45}} = \dfrac{1}{3}\)

\(\Rightarrow \widehat {ANK} = \arctan \dfrac{1}{3}\)

\( \Rightarrow \widehat {AOK} = 2\widehat {ANK} = 2\arctan \dfrac{1}{3}\) (góc ở tâm và góc nội tiếp cùng chắn cung AM).

Xét tam giác OAB có \(OA = OB \Rightarrow \Delta OAB\) cân tại O \( \Rightarrow \) Đường cao OK đồng thời là phân giác

\( \Rightarrow \widehat {AOB} = 2\widehat {AOK} = 4\arctan \dfrac{1}{3} \approx 73,{7^0}\)

Vậy độ dài cung AMB là \(l = \dfrac{{\pi .R.{n^0}}}{{{{180}^0}}} = \dfrac{{\pi .25.73,7}}{{180}} \approx 32,18\,\,\left( m \right)\).

Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề số 15 - Đề thi vào lớp 10 môn Toán đặc sắc thuộc chuyên mục toán 9 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học cơ sở được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

Bài viết liên quan

Đề số 15 - Đề thi vào lớp 10 môn Toán: Phân tích chi tiết và hướng dẫn giải

Đề thi vào lớp 10 môn Toán là một kỳ thi quan trọng đánh giá năng lực học tập của học sinh sau nhiều năm học tập môn Toán ở bậc THCS. Việc làm quen với các dạng bài tập và cấu trúc đề thi là yếu tố then chốt để đạt kết quả tốt. Đề số 15 mà chúng tôi cung cấp dưới đây là một đề thi thử điển hình, được xây dựng dựa trên cấu trúc đề thi chính thức của các trường THPT chuyên và các tỉnh thành trên cả nước.

Cấu trúc đề thi

Đề số 15 thường bao gồm các phần sau:

  • Phần I: Đại số (4 điểm): Các bài tập về biến đổi biểu thức, giải phương trình, hệ phương trình, bất phương trình.
  • Phần II: Hình học (4 điểm): Các bài tập về chứng minh các tính chất hình học, tính diện tích, thể tích, giải bài toán thực tế liên quan đến hình học.
  • Phần III: Bài tập trắc nghiệm (2 điểm): Các câu hỏi trắc nghiệm về kiến thức đại số, hình học và các chủ đề khác.

Nội dung chi tiết đề thi

Để giúp các em học sinh hiểu rõ hơn về đề thi, chúng tôi sẽ phân tích chi tiết từng câu hỏi trong Đề số 15:

Câu 1: Đại số

Đề bài: Giải phương trình: 2x2 - 5x + 3 = 0

Hướng dẫn giải: Đây là một phương trình bậc hai. Ta có thể giải bằng cách sử dụng công thức nghiệm hoặc phân tích thành nhân tử. Trong trường hợp này, ta có thể phân tích thành nhân tử như sau: 2x2 - 2x - 3x + 3 = 0 => 2x(x-1) - 3(x-1) = 0 => (2x-3)(x-1) = 0. Từ đó, ta tìm được hai nghiệm x = 1 và x = 3/2.

Câu 2: Hình học

Đề bài: Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm. Tính độ dài đường cao AH.

Hướng dẫn giải: Ta có thể tính diện tích tam giác ABC theo hai cách: S = (1/2)AB.AC và S = (1/2)BC.AH. Từ đó, ta tìm được độ dài BC bằng định lý Pitago: BC = √(AB2 + AC2) = √(32 + 42) = 5cm. Sau đó, ta có thể tính AH = (AB.AC)/BC = (3.4)/5 = 2.4cm.

Lời khuyên khi làm bài thi

Để đạt kết quả tốt trong kỳ thi vào lớp 10 môn Toán, các em học sinh cần lưu ý những điều sau:

  • Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý, công thức và các phương pháp giải toán cơ bản.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán và làm quen với các dạng bài tập.
  • Quản lý thời gian: Phân bổ thời gian hợp lý cho từng câu hỏi và tránh dành quá nhiều thời gian cho một câu hỏi khó.
  • Kiểm tra lại bài làm: Sau khi làm xong bài, hãy kiểm tra lại bài làm để phát hiện và sửa lỗi sai.

Tài liệu ôn thi tại giaitoan.edu.vn

Ngoài Đề số 15, giaitoan.edu.vn còn cung cấp nhiều tài liệu ôn thi vào lớp 10 môn Toán khác, bao gồm:

  • Các đề thi thử vào lớp 10 môn Toán của các năm trước.
  • Các bài giảng video về các chủ đề quan trọng trong chương trình Toán lớp 9.
  • Các bài tập luyện tập có đáp án chi tiết.

Hãy truy cập giaitoan.edu.vn để khám phá thêm nhiều tài liệu ôn thi hữu ích và chuẩn bị tốt nhất cho kỳ thi vào lớp 10 môn Toán sắp tới!

Bảng tổng hợp các dạng bài tập thường gặp

Dạng bài tậpChủ đềMức độ khó
Giải phương trình bậc haiĐại sốTrung bình
Chứng minh các tính chất hình họcHình họcTrung bình
Tính diện tích hìnhHình họcDễ
Giải bài toán thực tếĐại số, Hình họcKhó

Chúc các em học sinh ôn thi tốt và đạt kết quả cao trong kỳ thi vào lớp 10 môn Toán!

Tài liệu, đề thi và đáp án Toán 9