Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Bình Phước năm 2020

Đề thi vào 10 môn Toán Bình Phước năm 2020

Đề thi vào 10 môn Toán Bình Phước năm 2020 - Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Bình Phước năm 2020. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này bao gồm các đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán Bình Phước năm 2020, được chúng tôi tổng hợp và cung cấp kèm theo đáp án chi tiết, giúp các em tự học và kiểm tra kiến thức một cách hiệu quả.

Câu 1: 1. Tính giá trị của biểu thức sau:

Đề bài

    Câu 1:

    1. Tính giá trị của biểu thức sau:

    \(A = \sqrt {64} - \sqrt {49} \) \(B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \)

    2. Cho biểu thức \(Q = \dfrac{{x + 2\sqrt x }}{{\sqrt x + 2}} - 3\,\,\left( {x \ge 0} \right)\)

    a) Rút gọn biểu thức \(Q\).

    b) Tìm giá trị của x để biểu thức \(Q = 2\).

    Câu 2:

    1. Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 3\)

    a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một mặt phẳng tọa độ \(Oxy.\)

    b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.

    2) Không sử dụng máy tính, giải hệ phương trình sau: \(\left\{ \begin{array}{l}2x - 3y = 3\\x + 3y = 6\end{array} \right..\)

    Câu 3:

    1. Cho phương trình ẩn x: \({x^2} - 5x + \left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\).

    a) Giải phương trình (1) với \(m = 6\).

    b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt \({x_1},\,\,{x_2}\) thỏa mãn hệ thức \(\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }} = \dfrac{3}{2}\).

    2. Một thửa đất hình chữ nhật có chiều dài hơn chiều rộng 4m và có diện tích là \(320{m^2}\). Tính chu vi thửa đất đó.

    Câu 4:

    Cho tam giác \(ABC\) vuông tại \(A\), có cạnh \(AC = 8\,\,cm\), \(\angle B = {60^0}\). Tính số đo góc \(\angle C\) và độ dài các cạnh \(AB,\,\,BC\), đường trung tuyến \(AM\) của tam giác \(ABC\).

    Câu 5:

    Từ một điểm \(T\) ở bên ngoài đường tròn \(\left( O \right).\) Vẽ hai tiếp tuyến \(TA,\,\,TB\) với đường tròn (\(A,\,\,B\) là hai tiếp điểm). Tia \(TO\) cắt \(\left( O \right)\) tại hai điểm phân biệt \(C\) và \(D\) (\(C\) nằm giữa \(T\) và \(O\)) vắt cắt đoạn thẳng \(AB\) tại \(F.\)

    a) Chứng minh: Tứ giác \(TAOB\) nội tiếp.

    b) Chứng minh: \(TC.TD = TF.TO.\)

    c) Vẽ đường kính \(AG\) của đường tròn \(\left( O \right).\) Gọi \(H\) là chân đường vuông góc kẻ từ điểm \(B\) đến \(AG,\,\,I\) là giao điểm của \(TG\) và \(BH.\) Chứng minh \(I\) là trung điểm của \(BH.\)

    Lời giải

      Câu 1 (2,0 điểm)

      Cách giải:

      1. Tính giá trị của biểu thức sau:

      \(A = \sqrt {64} - \sqrt {49} \) \(B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \)

      + Tính giá trị biểu thức A:

      \(\begin{array}{l}A = \sqrt {64} - \sqrt {49} \\A = \sqrt {{8^2}} - \sqrt {{7^2}} \\A = 8 - 7\\A = 1\end{array}\)

      Vậy \(A = 1\).

      + Tính giá trị biểu thức B:

      \(\begin{array}{l}B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \\B = \left| {4 + \sqrt 7 } \right| - \sqrt 7 \\B = 4 + \sqrt 7 - \sqrt 7 \,\,\left( {Do\,\,4 + \sqrt 7 > 0} \right)\\B = 4\end{array}\)

      Vậy \(B = 4\).

      2. Cho biểu thức \(Q = \dfrac{{x + 2\sqrt x }}{{\sqrt x + 2}} - 3\,\,\left( {x \ge 0} \right)\)

      a) Rút gọn biểu thức \(Q\).

      Với \(x \ge 0\) ta có:

      \(\begin{array}{l}Q = \dfrac{{x + 2\sqrt x }}{{\sqrt x + 2}} - 3\\Q = \dfrac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\sqrt x + 2}} - 3\\Q = \sqrt x - 3\end{array}\)

      Vậy với \(x \ge 0\) thì \(Q = \sqrt x - 3\).

      b) Tìm giá trị của x để biểu thức \(Q = 2\).

      Ta có: \(Q = 2 \Leftrightarrow \sqrt x - 3 = 2 \Leftrightarrow \sqrt x = 5 \Leftrightarrow x = 25\,\,\left( {tm} \right)\).

      Vậy để \(Q = 2\) thì \(x = 25\).

      Câu 2 (2điểm)

      Cách giải:

      1. Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 3\)

      a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một mặt phẳng tọa độ \(Oxy.\)

      +) Vẽ parabol \(\left( P \right):\,\,y = {x^2}\)

      Ta có bảng giá trị:

      \(x\)

      \( - 2\)

      \( - 1\)

      \(0\)

      \(1\)

      \(2\)

      \(y = {x^2}\)

      \(4\)

      \(1\)

      \(0\)

      \(1\)

      \(4\)

      Vậy \(\left( P \right):\,\,y = {x^2}\) là đường cong đi qua các điểm: \(\left( { - 2;\,\,4} \right),\,\,\left( { - 1;\,\,1} \right),\,\,\left( {0;\,\,0} \right),\,\,\left( {1;\,\,1} \right),\,\,\left( {2;\,\,4} \right).\)

      +) Vẽ đường thẳng \(\left( d \right):\,\,y = 2x + 3\).

      Ta có bảng giá trị:

      \(x\)

      \(0\)

      \( - 1\)

      \(y = 2x + 3\)

      \(3\)

      \(1\)

      Vậy \(\left( d \right):\,\,\,y = 2x + 3\) là đường thẳng đi qua các điểm \(\left( {0;\,\,3} \right)\) và \(\left( { - 1;\,\,1} \right).\)

      Đề thi vào 10 môn Toán Bình Phước năm 2020 1 1

      b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.

      Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) ta có:

      \(\begin{array}{l}\,\,\,\,\,\,{x^2} = 2x + 3\\ \Leftrightarrow {x^2} - 2x - 3 = 0\\ \Leftrightarrow {x^2} - 3x + x - 3 = 0\\ \Leftrightarrow x\left( {x - 3} \right) + \left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\end{array}\)

      +) Với \(x = 3 \Rightarrow y = {3^2} = 9\).

      +) Với \(x = - 1 \Rightarrow y = {\left( { - 1} \right)^2} = 1.\)

      Vậy \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có tọa độ là \(\left( {3;\,\,9} \right)\) và \(\left( { - 1;\,\,1} \right).\)

      2) Không sử dụng máy tính, giải hệ phương trình sau: \(\left\{ \begin{array}{l}2x - 3y = 3\\x + 3y = 6\end{array} \right..\)

      \(\left\{ \begin{array}{l}2x - 3y = 3\\x + 3y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 9\\x + 3y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3 + 3y = 6\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\).

      Vậy hệ phương trình có nghiệm duy nhất \(\left( {3;\,\,1} \right).\)

      Câu 3 (2,5 điểm)

      Cách giải:

      1. Cho phương trình ẩn x: \({x^2} - 5x + \left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\).

      a) Giải phương trình (1) với \(m = 6\).

      Với \(m = 6\) thì phương trình (1) trở thành:

      \(\begin{array}{l}\,\,\,\,\,\,{x^2} - 5x + 4 = 0\\ \Leftrightarrow {x^2} - x - 4x + 4 = 0\\ \Leftrightarrow \left( {{x^2} - x} \right) - \left( {4x - 4} \right) = 0\\ \Leftrightarrow x\left( {x - 1} \right) - 4\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\end{array}\)

      Vậy với \(m = 6\) thì tập nghiệm của phương trình là \(S = \left\{ {1;4} \right\}\).

      b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt \({x_1},\,\,{x_2}\) thỏa mãn hệ thức \(\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }} = \dfrac{3}{2}\).

      Để phương trình (1) có hai nghiệm dương phân biệt \({x_1},\,\,{x_2}\) thì \(\left\{ \begin{array}{l}\Delta > 0\\S > 0\\P > 0\end{array} \right.\)

      \( \Leftrightarrow \left\{ \begin{array}{l}{\left( { - 5} \right)^2} - 4\left( {m - 2} \right) > 0\\5 > 0\,\,\left( {luon\,\,dung} \right)\\m - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25 - 4m + 8 > 0\\m > 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}33 - 4m > 0\\m > 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m < \dfrac{{33}}{4}\\m > 2\end{array} \right. \Leftrightarrow 2 < m < \dfrac{{33}}{4}\).

      Khi đó áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}{x_2} = m - 2\end{array} \right.\).

      Theo bài ra ta có:

      \(\begin{array}{l}\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }} = \dfrac{3}{2}\\ \Leftrightarrow \dfrac{{\sqrt {{x_1}} + \sqrt {{x_2}} }}{{\sqrt {{x_1}{x_2}} }} = \dfrac{3}{2}\\ \Leftrightarrow 2\left( {\sqrt {{x_1}} + \sqrt {{x_2}} } \right) = 3\sqrt {{x_1}{x_2}} \\ \Leftrightarrow 4\left( {{x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} } \right) = 9{x_1}{x_2}\\ \Leftrightarrow 4\left( {5 + 2\sqrt {m - 2} } \right) = 9\left( {m - 2} \right)\\ \Leftrightarrow 9\left( {m - 2} \right) - 8\sqrt {m - 2} - 20 = 0\,\,\,\left( * \right)\end{array}\)

      Đặt \(t = \sqrt {m - 2} \,\,\left( {t \ge 0} \right)\), phương trình (*) trở thành:

      \(\begin{array}{l}\,\,\,\,\,9{t^2} - 8t - 20 = 0\\ \Leftrightarrow 9{t^2} - 18t + 10t - 20 = 0\\ \Leftrightarrow \left( {9{t^2} - 18t} \right) + \left( {10t - 20} \right) = 0\\ \Leftrightarrow 9t\left( {t - 2} \right) + 10\left( {t - 2} \right) = 0\\ \Leftrightarrow \left( {t - 2} \right)\left( {9t + 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 2 = 0\\9t + 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t = - \dfrac{{10}}{9}\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

      Với \(t = 2\) \( \Rightarrow \sqrt {m - 2} = 2 \Leftrightarrow m - 2 = 4 \Leftrightarrow m = 6\,\,\left( {tm} \right)\).

      Vậy \(m = 6\).

      2. Một thửa đất hình chữ nhật có chiều dài hơn chiều rộng 4m và có diện tích là \(320{m^2}\). Tính chu vi thửa đất đó.

      Gọi chiều rộng thửa đất là \(x\,\,\left( m \right)\) (ĐK: \(x > 0\)) \( \Rightarrow \) Chiều dài thửa đất là \(x + 4\,\,\left( m \right)\).

      Vì thửa đất có diện tích là \(320{m^2}\) nên ta có phương trình:

      \(\begin{array}{l}x\left( {x + 4} \right) = 320\\ \Leftrightarrow {x^2} + 4x - 320 = 0\\ \Leftrightarrow {x^2} - 16x + 20x - 320 = 0\\ \Leftrightarrow \left( {{x^2} - 16x} \right) + \left( {20x - 320} \right) = 0\\ \Leftrightarrow x\left( {x - 16} \right) + 20\left( {x - 16} \right) = 0\\ \Leftrightarrow \left( {x - 16} \right)\left( {x + 20} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 16 = 0\\x + 20 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 16\,\,\,\,\,\,\left( {tm} \right)\\x = - 20\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

      \( \Rightarrow \) Chiều rộng thửa đất là \(16m\), chiều dài thửa đất là \(16 + 4 = 20m\).

      Vậy chu vi thửa đất đó là: \(\left( {16 + 20} \right).2 = 72\,\,\left( m \right)\).

      Câu 4 (2,5 điểm)

      Cách giải:

      Cho tam giác \(ABC\) vuông tại \(A\), có cạnh \(AC = 8\,\,cm\), \(\angle B = {60^0}\). Tính số đo góc \(\angle C\) và độ dài các cạnh \(AB,\,\,BC\), đường trung tuyến \(AM\) của tam giác \(ABC\).

      Đề thi vào 10 môn Toán Bình Phước năm 2020 1 2

      Vì \(\Delta ABC\) vuông tại \(A\) nên \(\angle B + \angle C = {90^0}\) (hai góc nhọn trong tam giác vuông phụ nhau).

      \( \Rightarrow \angle C = {90^0} - \angle B = {90^0} - {60^0} = {30^0}\).

      Ta có:

      \(\tan {60^0} = \dfrac{{AC}}{{AB}} \Rightarrow AB = \dfrac{{AC}}{{\tan {{60}^0}}} = \dfrac{8}{{\sqrt 3 }} = \dfrac{{8\sqrt 3 }}{3}\,\,\left( {cm} \right)\).

      \(\sin {60^0} = \dfrac{{AC}}{{BC}} \Rightarrow BC = \dfrac{{AC}}{{\sin {{60}^0}}} = \dfrac{8}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{{16\sqrt 3 }}{3}\,\,\left( {cm} \right)\).

      Tam giác \(ABC\) vuông tại \(A\) có đường trung tuyến \(AM\) ứng với cạnh huyền \(BC\) nên

      \(AM = \dfrac{1}{2}BC = \dfrac{1}{2}.\dfrac{{16\sqrt 3 }}{3} = \dfrac{{8\sqrt 3 }}{3}\).

      Vậy \(\angle C = {30^0},\,\,AB = AM = \dfrac{{8\sqrt 3 }}{3}cm,\,\,BC = \dfrac{{16\sqrt 3 }}{3}\,cm\).

      Câu 5 (2,5 điểm)

      Cách giải:

      Từ một điểm \(T\) ở bên ngoài đường tròn \(\left( O \right).\) Vẽ hai tiếp tuyến \(TA,\,\,TB\) với đường tròn (\(A,\,\,B\) là hai tiếp điểm). Tia \(TO\) cắt \(\left( O \right)\) tại hai điểm phân biệt \(C\) và \(D\) (\(C\) nằm giữa \(T\) và \(O\)) vắt cắt đoạn thẳng \(AB\) tại \(F.\)

      Đề thi vào 10 môn Toán Bình Phước năm 2020 1 3

      a) Chứng minh: Tứ giác \(TAOB\) nội tiếp.

      Ta có: \(TA,\,\,TB\) là hai tiếp tuyến của \(\left( O \right)\) tại \(A,\,\,B\) (gt).

      \( \Rightarrow \left\{ \begin{array}{l}TA \bot OA\\TB \bot OB\end{array} \right.\) \( \Rightarrow \angle TAO = \angle TBO = {90^0}\).

      Xét tứ giác \(TAOB\) ta có: \(\angle TAO + \angle TBO = {90^0} + {90^0} = {180^0}\).

      Mà hai góc này là hai góc đối diện

      \( \Rightarrow TAOB\) là tứ giác nội tiếp (dhnb).

      b) Chứng minh: \(TC.TD = TF.TO.\)

      Ta có: \(OA = OB = R\) \( \Rightarrow O\) thuộc đường trung trực của \(AB.\)

      \(TA = TB\,\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow T\) thuộc đường trung trực của \(AB.\)

      \( \Rightarrow TO\) là đường trung trực của \(AB.\)

      \( \Rightarrow TO \bot AB = \left\{ F \right\}\)

      Áp dụng hệ thức lượng cho \(\Delta TAO\) vuông tại \(A\) có đường cao \(AF\) ta có: \(T{A^2} = TF.TO\,\,\,\left( 1 \right)\)

      Xét \(\Delta TAC\) và \(\Delta TDA\) ta có:

      \(\angle T\) chung;

      \(\angle TDA = \angle TAC\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(AC\)).

      \( \Rightarrow \Delta TAC \sim \Delta TDA\,\,\,\left( {g - g} \right)\)

      \( \Rightarrow \dfrac{{TA}}{{TD}} = \dfrac{{TC}}{{TA}} \Leftrightarrow T{A^2} = TC.TD\,\,\,\,\left( 2 \right)\)

      Từ (1) và (2) \( \Rightarrow TF.TO = TC.TD\,\,\,\left( { = T{A^2}} \right)\,\,\,\left( {dpcm} \right).\)

      c) Vẽ đường kính \(AG\) của đường tròn \(\left( O \right).\) Gọi \(H\) là chân đường vuông góc kẻ từ điểm \(B\) đến \(AG,\,\,I\) là giao điểm của \(TG\) và \(BH.\) Chứng minh \(I\) là trung điểm của \(BH.\)

      Gọi \(AB \cap TG = \left\{ K \right\}\).

      Ta có: \(\left\{ \begin{array}{l}AT \bot OA \Rightarrow AT \bot AG\\BH \bot AG\end{array} \right. \Rightarrow BH\parallel AT\) (từ vuông góc đến song song).

      \( \Rightarrow \angle ABH = \angle TAB\) (so le trong).

      Mà \(TA = TB\) (tính chất 2 tiếp tuyến cắt nhau) nên \(\Delta TAB\) cân tại \(T\) \( \Rightarrow \angle TAB = \angle TBA\).

      \( \Rightarrow \angle ABH = \angle TBA\)

      \( \Rightarrow BK\) là phân giác của \(\angle TBH\).

      Ta có: \(\angle ABG = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow BA \bot BG\) hay \(BK \bot BG\).

      Do đó \(BG\) là phân giác ngoài của \(\angle TBH\).

      Áp dụng định lí đường phân giác ta có: \(\dfrac{{BI}}{{BT}} = \dfrac{{KI}}{{KT}} = \dfrac{{GI}}{{GT}}\).

      Lại có: \(\dfrac{{KI}}{{KT}} = \dfrac{{BI}}{{AT}};\,\,\dfrac{{GI}}{{GT}} = \dfrac{{IH}}{{AT}}\) (định lí Ta-lét)

      Do đó \(\dfrac{{BI}}{{AT}} = \dfrac{{IH}}{{AT}} \Rightarrow BI = IH\).

      Vậy \(I\) là trung điểm của \(BH\) (đpcm).

      Lựa chọn câu để xem lời giải nhanh hơn
      • Đề bài
      • Lời giải
      • Tải về

      Câu 1:

      1. Tính giá trị của biểu thức sau:

      \(A = \sqrt {64} - \sqrt {49} \) \(B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \)

      2. Cho biểu thức \(Q = \dfrac{{x + 2\sqrt x }}{{\sqrt x + 2}} - 3\,\,\left( {x \ge 0} \right)\)

      a) Rút gọn biểu thức \(Q\).

      b) Tìm giá trị của x để biểu thức \(Q = 2\).

      Câu 2:

      1. Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 3\)

      a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một mặt phẳng tọa độ \(Oxy.\)

      b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.

      2) Không sử dụng máy tính, giải hệ phương trình sau: \(\left\{ \begin{array}{l}2x - 3y = 3\\x + 3y = 6\end{array} \right..\)

      Câu 3:

      1. Cho phương trình ẩn x: \({x^2} - 5x + \left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\).

      a) Giải phương trình (1) với \(m = 6\).

      b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt \({x_1},\,\,{x_2}\) thỏa mãn hệ thức \(\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }} = \dfrac{3}{2}\).

      2. Một thửa đất hình chữ nhật có chiều dài hơn chiều rộng 4m và có diện tích là \(320{m^2}\). Tính chu vi thửa đất đó.

      Câu 4:

      Cho tam giác \(ABC\) vuông tại \(A\), có cạnh \(AC = 8\,\,cm\), \(\angle B = {60^0}\). Tính số đo góc \(\angle C\) và độ dài các cạnh \(AB,\,\,BC\), đường trung tuyến \(AM\) của tam giác \(ABC\).

      Câu 5:

      Từ một điểm \(T\) ở bên ngoài đường tròn \(\left( O \right).\) Vẽ hai tiếp tuyến \(TA,\,\,TB\) với đường tròn (\(A,\,\,B\) là hai tiếp điểm). Tia \(TO\) cắt \(\left( O \right)\) tại hai điểm phân biệt \(C\) và \(D\) (\(C\) nằm giữa \(T\) và \(O\)) vắt cắt đoạn thẳng \(AB\) tại \(F.\)

      a) Chứng minh: Tứ giác \(TAOB\) nội tiếp.

      b) Chứng minh: \(TC.TD = TF.TO.\)

      c) Vẽ đường kính \(AG\) của đường tròn \(\left( O \right).\) Gọi \(H\) là chân đường vuông góc kẻ từ điểm \(B\) đến \(AG,\,\,I\) là giao điểm của \(TG\) và \(BH.\) Chứng minh \(I\) là trung điểm của \(BH.\)

      Câu 1 (2,0 điểm)

      Cách giải:

      1. Tính giá trị của biểu thức sau:

      \(A = \sqrt {64} - \sqrt {49} \) \(B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \)

      + Tính giá trị biểu thức A:

      \(\begin{array}{l}A = \sqrt {64} - \sqrt {49} \\A = \sqrt {{8^2}} - \sqrt {{7^2}} \\A = 8 - 7\\A = 1\end{array}\)

      Vậy \(A = 1\).

      + Tính giá trị biểu thức B:

      \(\begin{array}{l}B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7 \\B = \left| {4 + \sqrt 7 } \right| - \sqrt 7 \\B = 4 + \sqrt 7 - \sqrt 7 \,\,\left( {Do\,\,4 + \sqrt 7 > 0} \right)\\B = 4\end{array}\)

      Vậy \(B = 4\).

      2. Cho biểu thức \(Q = \dfrac{{x + 2\sqrt x }}{{\sqrt x + 2}} - 3\,\,\left( {x \ge 0} \right)\)

      a) Rút gọn biểu thức \(Q\).

      Với \(x \ge 0\) ta có:

      \(\begin{array}{l}Q = \dfrac{{x + 2\sqrt x }}{{\sqrt x + 2}} - 3\\Q = \dfrac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\sqrt x + 2}} - 3\\Q = \sqrt x - 3\end{array}\)

      Vậy với \(x \ge 0\) thì \(Q = \sqrt x - 3\).

      b) Tìm giá trị của x để biểu thức \(Q = 2\).

      Ta có: \(Q = 2 \Leftrightarrow \sqrt x - 3 = 2 \Leftrightarrow \sqrt x = 5 \Leftrightarrow x = 25\,\,\left( {tm} \right)\).

      Vậy để \(Q = 2\) thì \(x = 25\).

      Câu 2 (2điểm)

      Cách giải:

      1. Cho parabol \(\left( P \right):\,\,\,y = {x^2}\) và đường thẳng \(\left( d \right):\,\,\,y = 2x + 3\)

      a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một mặt phẳng tọa độ \(Oxy.\)

      +) Vẽ parabol \(\left( P \right):\,\,y = {x^2}\)

      Ta có bảng giá trị:

      \(x\)

      \( - 2\)

      \( - 1\)

      \(0\)

      \(1\)

      \(2\)

      \(y = {x^2}\)

      \(4\)

      \(1\)

      \(0\)

      \(1\)

      \(4\)

      Vậy \(\left( P \right):\,\,y = {x^2}\) là đường cong đi qua các điểm: \(\left( { - 2;\,\,4} \right),\,\,\left( { - 1;\,\,1} \right),\,\,\left( {0;\,\,0} \right),\,\,\left( {1;\,\,1} \right),\,\,\left( {2;\,\,4} \right).\)

      +) Vẽ đường thẳng \(\left( d \right):\,\,y = 2x + 3\).

      Ta có bảng giá trị:

      \(x\)

      \(0\)

      \( - 1\)

      \(y = 2x + 3\)

      \(3\)

      \(1\)

      Vậy \(\left( d \right):\,\,\,y = 2x + 3\) là đường thẳng đi qua các điểm \(\left( {0;\,\,3} \right)\) và \(\left( { - 1;\,\,1} \right).\)

      Đề thi vào 10 môn Toán Bình Phước năm 2020 1

      b) Tìm tọa độ giao điểm của parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) bằng phép tính.

      Xét phương trình hoành độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) ta có:

      \(\begin{array}{l}\,\,\,\,\,\,{x^2} = 2x + 3\\ \Leftrightarrow {x^2} - 2x - 3 = 0\\ \Leftrightarrow {x^2} - 3x + x - 3 = 0\\ \Leftrightarrow x\left( {x - 3} \right) + \left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\end{array}\)

      +) Với \(x = 3 \Rightarrow y = {3^2} = 9\).

      +) Với \(x = - 1 \Rightarrow y = {\left( { - 1} \right)^2} = 1.\)

      Vậy \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có tọa độ là \(\left( {3;\,\,9} \right)\) và \(\left( { - 1;\,\,1} \right).\)

      2) Không sử dụng máy tính, giải hệ phương trình sau: \(\left\{ \begin{array}{l}2x - 3y = 3\\x + 3y = 6\end{array} \right..\)

      \(\left\{ \begin{array}{l}2x - 3y = 3\\x + 3y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 9\\x + 3y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3 + 3y = 6\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\3y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\).

      Vậy hệ phương trình có nghiệm duy nhất \(\left( {3;\,\,1} \right).\)

      Câu 3 (2,5 điểm)

      Cách giải:

      1. Cho phương trình ẩn x: \({x^2} - 5x + \left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\).

      a) Giải phương trình (1) với \(m = 6\).

      Với \(m = 6\) thì phương trình (1) trở thành:

      \(\begin{array}{l}\,\,\,\,\,\,{x^2} - 5x + 4 = 0\\ \Leftrightarrow {x^2} - x - 4x + 4 = 0\\ \Leftrightarrow \left( {{x^2} - x} \right) - \left( {4x - 4} \right) = 0\\ \Leftrightarrow x\left( {x - 1} \right) - 4\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\end{array}\)

      Vậy với \(m = 6\) thì tập nghiệm của phương trình là \(S = \left\{ {1;4} \right\}\).

      b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt \({x_1},\,\,{x_2}\) thỏa mãn hệ thức \(\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }} = \dfrac{3}{2}\).

      Để phương trình (1) có hai nghiệm dương phân biệt \({x_1},\,\,{x_2}\) thì \(\left\{ \begin{array}{l}\Delta > 0\\S > 0\\P > 0\end{array} \right.\)

      \( \Leftrightarrow \left\{ \begin{array}{l}{\left( { - 5} \right)^2} - 4\left( {m - 2} \right) > 0\\5 > 0\,\,\left( {luon\,\,dung} \right)\\m - 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}25 - 4m + 8 > 0\\m > 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}33 - 4m > 0\\m > 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}m < \dfrac{{33}}{4}\\m > 2\end{array} \right. \Leftrightarrow 2 < m < \dfrac{{33}}{4}\).

      Khi đó áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}{x_2} = m - 2\end{array} \right.\).

      Theo bài ra ta có:

      \(\begin{array}{l}\dfrac{1}{{\sqrt {{x_1}} }} + \dfrac{1}{{\sqrt {{x_2}} }} = \dfrac{3}{2}\\ \Leftrightarrow \dfrac{{\sqrt {{x_1}} + \sqrt {{x_2}} }}{{\sqrt {{x_1}{x_2}} }} = \dfrac{3}{2}\\ \Leftrightarrow 2\left( {\sqrt {{x_1}} + \sqrt {{x_2}} } \right) = 3\sqrt {{x_1}{x_2}} \\ \Leftrightarrow 4\left( {{x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} } \right) = 9{x_1}{x_2}\\ \Leftrightarrow 4\left( {5 + 2\sqrt {m - 2} } \right) = 9\left( {m - 2} \right)\\ \Leftrightarrow 9\left( {m - 2} \right) - 8\sqrt {m - 2} - 20 = 0\,\,\,\left( * \right)\end{array}\)

      Đặt \(t = \sqrt {m - 2} \,\,\left( {t \ge 0} \right)\), phương trình (*) trở thành:

      \(\begin{array}{l}\,\,\,\,\,9{t^2} - 8t - 20 = 0\\ \Leftrightarrow 9{t^2} - 18t + 10t - 20 = 0\\ \Leftrightarrow \left( {9{t^2} - 18t} \right) + \left( {10t - 20} \right) = 0\\ \Leftrightarrow 9t\left( {t - 2} \right) + 10\left( {t - 2} \right) = 0\\ \Leftrightarrow \left( {t - 2} \right)\left( {9t + 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 2 = 0\\9t + 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t = - \dfrac{{10}}{9}\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

      Với \(t = 2\) \( \Rightarrow \sqrt {m - 2} = 2 \Leftrightarrow m - 2 = 4 \Leftrightarrow m = 6\,\,\left( {tm} \right)\).

      Vậy \(m = 6\).

      2. Một thửa đất hình chữ nhật có chiều dài hơn chiều rộng 4m và có diện tích là \(320{m^2}\). Tính chu vi thửa đất đó.

      Gọi chiều rộng thửa đất là \(x\,\,\left( m \right)\) (ĐK: \(x > 0\)) \( \Rightarrow \) Chiều dài thửa đất là \(x + 4\,\,\left( m \right)\).

      Vì thửa đất có diện tích là \(320{m^2}\) nên ta có phương trình:

      \(\begin{array}{l}x\left( {x + 4} \right) = 320\\ \Leftrightarrow {x^2} + 4x - 320 = 0\\ \Leftrightarrow {x^2} - 16x + 20x - 320 = 0\\ \Leftrightarrow \left( {{x^2} - 16x} \right) + \left( {20x - 320} \right) = 0\\ \Leftrightarrow x\left( {x - 16} \right) + 20\left( {x - 16} \right) = 0\\ \Leftrightarrow \left( {x - 16} \right)\left( {x + 20} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 16 = 0\\x + 20 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 16\,\,\,\,\,\,\left( {tm} \right)\\x = - 20\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

      \( \Rightarrow \) Chiều rộng thửa đất là \(16m\), chiều dài thửa đất là \(16 + 4 = 20m\).

      Vậy chu vi thửa đất đó là: \(\left( {16 + 20} \right).2 = 72\,\,\left( m \right)\).

      Câu 4 (2,5 điểm)

      Cách giải:

      Cho tam giác \(ABC\) vuông tại \(A\), có cạnh \(AC = 8\,\,cm\), \(\angle B = {60^0}\). Tính số đo góc \(\angle C\) và độ dài các cạnh \(AB,\,\,BC\), đường trung tuyến \(AM\) của tam giác \(ABC\).

      Đề thi vào 10 môn Toán Bình Phước năm 2020 2

      Vì \(\Delta ABC\) vuông tại \(A\) nên \(\angle B + \angle C = {90^0}\) (hai góc nhọn trong tam giác vuông phụ nhau).

      \( \Rightarrow \angle C = {90^0} - \angle B = {90^0} - {60^0} = {30^0}\).

      Ta có:

      \(\tan {60^0} = \dfrac{{AC}}{{AB}} \Rightarrow AB = \dfrac{{AC}}{{\tan {{60}^0}}} = \dfrac{8}{{\sqrt 3 }} = \dfrac{{8\sqrt 3 }}{3}\,\,\left( {cm} \right)\).

      \(\sin {60^0} = \dfrac{{AC}}{{BC}} \Rightarrow BC = \dfrac{{AC}}{{\sin {{60}^0}}} = \dfrac{8}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{{16\sqrt 3 }}{3}\,\,\left( {cm} \right)\).

      Tam giác \(ABC\) vuông tại \(A\) có đường trung tuyến \(AM\) ứng với cạnh huyền \(BC\) nên

      \(AM = \dfrac{1}{2}BC = \dfrac{1}{2}.\dfrac{{16\sqrt 3 }}{3} = \dfrac{{8\sqrt 3 }}{3}\).

      Vậy \(\angle C = {30^0},\,\,AB = AM = \dfrac{{8\sqrt 3 }}{3}cm,\,\,BC = \dfrac{{16\sqrt 3 }}{3}\,cm\).

      Câu 5 (2,5 điểm)

      Cách giải:

      Từ một điểm \(T\) ở bên ngoài đường tròn \(\left( O \right).\) Vẽ hai tiếp tuyến \(TA,\,\,TB\) với đường tròn (\(A,\,\,B\) là hai tiếp điểm). Tia \(TO\) cắt \(\left( O \right)\) tại hai điểm phân biệt \(C\) và \(D\) (\(C\) nằm giữa \(T\) và \(O\)) vắt cắt đoạn thẳng \(AB\) tại \(F.\)

      Đề thi vào 10 môn Toán Bình Phước năm 2020 3

      a) Chứng minh: Tứ giác \(TAOB\) nội tiếp.

      Ta có: \(TA,\,\,TB\) là hai tiếp tuyến của \(\left( O \right)\) tại \(A,\,\,B\) (gt).

      \( \Rightarrow \left\{ \begin{array}{l}TA \bot OA\\TB \bot OB\end{array} \right.\) \( \Rightarrow \angle TAO = \angle TBO = {90^0}\).

      Xét tứ giác \(TAOB\) ta có: \(\angle TAO + \angle TBO = {90^0} + {90^0} = {180^0}\).

      Mà hai góc này là hai góc đối diện

      \( \Rightarrow TAOB\) là tứ giác nội tiếp (dhnb).

      b) Chứng minh: \(TC.TD = TF.TO.\)

      Ta có: \(OA = OB = R\) \( \Rightarrow O\) thuộc đường trung trực của \(AB.\)

      \(TA = TB\,\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow T\) thuộc đường trung trực của \(AB.\)

      \( \Rightarrow TO\) là đường trung trực của \(AB.\)

      \( \Rightarrow TO \bot AB = \left\{ F \right\}\)

      Áp dụng hệ thức lượng cho \(\Delta TAO\) vuông tại \(A\) có đường cao \(AF\) ta có: \(T{A^2} = TF.TO\,\,\,\left( 1 \right)\)

      Xét \(\Delta TAC\) và \(\Delta TDA\) ta có:

      \(\angle T\) chung;

      \(\angle TDA = \angle TAC\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(AC\)).

      \( \Rightarrow \Delta TAC \sim \Delta TDA\,\,\,\left( {g - g} \right)\)

      \( \Rightarrow \dfrac{{TA}}{{TD}} = \dfrac{{TC}}{{TA}} \Leftrightarrow T{A^2} = TC.TD\,\,\,\,\left( 2 \right)\)

      Từ (1) và (2) \( \Rightarrow TF.TO = TC.TD\,\,\,\left( { = T{A^2}} \right)\,\,\,\left( {dpcm} \right).\)

      c) Vẽ đường kính \(AG\) của đường tròn \(\left( O \right).\) Gọi \(H\) là chân đường vuông góc kẻ từ điểm \(B\) đến \(AG,\,\,I\) là giao điểm của \(TG\) và \(BH.\) Chứng minh \(I\) là trung điểm của \(BH.\)

      Gọi \(AB \cap TG = \left\{ K \right\}\).

      Ta có: \(\left\{ \begin{array}{l}AT \bot OA \Rightarrow AT \bot AG\\BH \bot AG\end{array} \right. \Rightarrow BH\parallel AT\) (từ vuông góc đến song song).

      \( \Rightarrow \angle ABH = \angle TAB\) (so le trong).

      Mà \(TA = TB\) (tính chất 2 tiếp tuyến cắt nhau) nên \(\Delta TAB\) cân tại \(T\) \( \Rightarrow \angle TAB = \angle TBA\).

      \( \Rightarrow \angle ABH = \angle TBA\)

      \( \Rightarrow BK\) là phân giác của \(\angle TBH\).

      Ta có: \(\angle ABG = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow BA \bot BG\) hay \(BK \bot BG\).

      Do đó \(BG\) là phân giác ngoài của \(\angle TBH\).

      Áp dụng định lí đường phân giác ta có: \(\dfrac{{BI}}{{BT}} = \dfrac{{KI}}{{KT}} = \dfrac{{GI}}{{GT}}\).

      Lại có: \(\dfrac{{KI}}{{KT}} = \dfrac{{BI}}{{AT}};\,\,\dfrac{{GI}}{{GT}} = \dfrac{{IH}}{{AT}}\) (định lí Ta-lét)

      Do đó \(\dfrac{{BI}}{{AT}} = \dfrac{{IH}}{{AT}} \Rightarrow BI = IH\).

      Vậy \(I\) là trung điểm của \(BH\) (đpcm).

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Bình Phước năm 2020 đặc sắc thuộc chuyên mục giải sgk toán 9 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Bình Phước năm 2020: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 môn Toán tỉnh Bình Phước năm 2020 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để chuẩn bị tốt nhất cho kỳ thi này, việc nắm vững cấu trúc đề thi, các dạng bài tập thường gặp và phương pháp giải quyết là vô cùng cần thiết. Bài viết này sẽ cung cấp cho các em một cái nhìn tổng quan về đề thi vào 10 môn Toán Bình Phước năm 2020, cùng với những phân tích chi tiết và hướng dẫn giải các bài tập điển hình.

      Cấu trúc đề thi vào 10 môn Toán Bình Phước năm 2020

      Đề thi vào 10 môn Toán Bình Phước năm 2020 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và kỹ năng vận dụng đơn giản.
      • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, bao gồm các bài toán đại số, hình học và số học. Các bài toán tự luận thường đòi hỏi học sinh phải có khả năng phân tích, suy luận và vận dụng kiến thức một cách linh hoạt.

      Các dạng bài tập thường gặp trong đề thi

      Trong đề thi vào 10 môn Toán Bình Phước năm 2020, các em học sinh thường gặp các dạng bài tập sau:

      1. Bài toán về phương trình và hệ phương trình: Đây là một trong những dạng bài tập quan trọng và thường xuyên xuất hiện trong đề thi. Các em cần nắm vững các phương pháp giải phương trình và hệ phương trình, như phương pháp thế, phương pháp cộng đại số, phương pháp đặt ẩn phụ.
      2. Bài toán về bất đẳng thức: Các bài toán về bất đẳng thức đòi hỏi học sinh phải có kiến thức về các tính chất của bất đẳng thức, các phương pháp chứng minh bất đẳng thức và giải bất đẳng thức.
      3. Bài toán về hàm số: Các bài toán về hàm số yêu cầu học sinh phải hiểu rõ khái niệm hàm số, các loại hàm số thường gặp và các tính chất của hàm số.
      4. Bài toán về hình học: Các bài toán về hình học thường liên quan đến các kiến thức về tam giác, tứ giác, đường tròn, hình hộp, hình trụ, hình cầu. Các em cần nắm vững các định lý, tính chất và công thức tính diện tích, thể tích của các hình.
      5. Bài toán về số học: Các bài toán về số học thường liên quan đến các kiến thức về số nguyên tố, ước số, bội số, phân số, tỷ lệ.

      Hướng dẫn giải một số bài tập điển hình

      Ví dụ 1: Giải phương trình 2x + 3 = 7

      Giải:

      2x + 3 = 7

      2x = 7 - 3

      2x = 4

      x = 2

      Ví dụ 2: Chứng minh bất đẳng thức a2 + b2 ≥ 2ab với mọi số thực a, b.

      Giải:

      Ta có: (a - b)2 ≥ 0 với mọi số thực a, b.

      Khai triển biểu thức, ta được: a2 - 2ab + b2 ≥ 0

      Suy ra: a2 + b2 ≥ 2ab

      Lời khuyên để ôn thi hiệu quả

      Để ôn thi vào 10 môn Toán Bình Phước năm 2020 hiệu quả, các em học sinh nên:

      • Nắm vững kiến thức cơ bản: Đây là nền tảng quan trọng để giải quyết các bài tập khó.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp các em làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.
      • Tìm hiểu các phương pháp giải toán: Nắm vững các phương pháp giải toán sẽ giúp các em giải quyết các bài tập một cách nhanh chóng và hiệu quả.
      • Ôn tập theo cấu trúc đề thi: Ôn tập theo cấu trúc đề thi sẽ giúp các em làm quen với cách ra đề và phân bổ thời gian hợp lý trong kỳ thi.
      • Giữ tâm lý thoải mái: Tâm lý thoải mái sẽ giúp các em tập trung và làm bài tốt nhất.

      Tài liệu tham khảo hữu ích

      Ngoài bộ đề thi vào 10 môn Toán Bình Phước năm 2020 mà Giaitoan.edu.vn cung cấp, các em học sinh có thể tham khảo thêm các tài liệu sau:

      • Sách giáo khoa Toán lớp 9
      • Sách bài tập Toán lớp 9
      • Các đề thi thử vào 10 môn Toán của các trường THCS
      • Các trang web học toán online uy tín

      Chúc các em học sinh ôn thi tốt và đạt kết quả cao trong kỳ thi tuyển sinh vào lớp 10 môn Toán tỉnh Bình Phước năm 2020!

      Tài liệu, đề thi và đáp án Toán 9