Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Thanh Hóa năm 2021

Đề thi vào 10 môn Toán Thanh Hóa năm 2021

Đề thi vào 10 môn Toán Thanh Hóa năm 2021: Cập nhật mới nhất

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Thanh Hóa năm 2021 chính thức. Đây là tài liệu ôn tập vô cùng quan trọng dành cho các em học sinh đang chuẩn bị cho kỳ thi sắp tới.

Chúng tôi cung cấp đầy đủ các đề thi, đáp án và lời giải chi tiết, giúp các em làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi.

Câu I (2,0 điểm): Cho biểu thức

Đề bài

    Câu I (2,0 điểm):

    Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x + 5}} + \dfrac{{2\sqrt x }}{{\sqrt x - 5}} - \dfrac{{3x + 25}}{{x - 25}}\) với \(x \ge 0,\,\,x \ne 25\).

    1) Rút gọn biểu thức \(P\)

    2) Tìm các giá trị của \(x\) để \(P = \dfrac{5}{7}\)

    Câu II (2,0 điểm):

    1. Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right)\) có phương trình \(y = \left( {2m + 1} \right)x + m\) (\(m\) là tham số). Tìm \(m\) để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( {1;5} \right)\).

    2. Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 11\\4x - y = 7\end{array} \right.\).

    Câu III (2,0 điểm):

    1. Giải phương trình \({x^2} - 6x + 5 = 0\).

    2. Cho phương trình \({x^2} - 2x + m - 1 = 0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn hệ thức \({x_1}^4 - {x_1}^3 = {x_2}^4 - {x_2}^3.\)

    Câu IV (3,0 điểm):

    Cho tam giác nhọn ABC nội tiếp đường tròn \((O)\). Các đường cao AD, BE, CF (D thuộc B, E thuộc AC, F thuộc AB) của tam giác cắt nhau tại H, M là trung điểm của cạnh BC.

    1. Chứng minh AEHF là tứ giác nội tiếp

    2. Chứng minh các đường thẳng ME và MF là các tiếp tuyến của đường tròn ngoại tiếp tứ giác AEHF.

    3. Chứng minh \(DE + DF \le BC\).

    Câu V (1,0 điểm):

    Cho ba số thực \(x,\,\,y,\,\,z\) thay đổi thỏa mãn các điều kiện \(x > \dfrac{1}{4},\,\,y > \dfrac{1}{3},\,\,z > \dfrac{1}{2}\) và \(\dfrac{4}{{4x + 3}} + \dfrac{3}{{3y + 2}} + \dfrac{2}{{2z + 1}} \ge 2\). Tìm giá trị lớn nhất của biểu thức \(Q = \left( {4x - 1} \right)\left( {3y - 1} \right)\left( {2z - 1} \right)\). 

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải chi tiết
    • Tải về

    Câu I (2,0 điểm):

    Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x + 5}} + \dfrac{{2\sqrt x }}{{\sqrt x - 5}} - \dfrac{{3x + 25}}{{x - 25}}\) với \(x \ge 0,\,\,x \ne 25\).

    1) Rút gọn biểu thức \(P\)

    2) Tìm các giá trị của \(x\) để \(P = \dfrac{5}{7}\)

    Câu II (2,0 điểm):

    1. Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right)\) có phương trình \(y = \left( {2m + 1} \right)x + m\) (\(m\) là tham số). Tìm \(m\) để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( {1;5} \right)\).

    2. Giải hệ phương trình \(\left\{ \begin{array}{l}4x + 3y = 11\\4x - y = 7\end{array} \right.\).

    Câu III (2,0 điểm):

    1. Giải phương trình \({x^2} - 6x + 5 = 0\).

    2. Cho phương trình \({x^2} - 2x + m - 1 = 0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn hệ thức \({x_1}^4 - {x_1}^3 = {x_2}^4 - {x_2}^3.\)

    Câu IV (3,0 điểm):

    Cho tam giác nhọn ABC nội tiếp đường tròn \((O)\). Các đường cao AD, BE, CF (D thuộc B, E thuộc AC, F thuộc AB) của tam giác cắt nhau tại H, M là trung điểm của cạnh BC.

    1. Chứng minh AEHF là tứ giác nội tiếp

    2. Chứng minh các đường thẳng ME và MF là các tiếp tuyến của đường tròn ngoại tiếp tứ giác AEHF.

    3. Chứng minh \(DE + DF \le BC\).

    Câu V (1,0 điểm):

    Cho ba số thực \(x,\,\,y,\,\,z\) thay đổi thỏa mãn các điều kiện \(x > \dfrac{1}{4},\,\,y > \dfrac{1}{3},\,\,z > \dfrac{1}{2}\) và \(\dfrac{4}{{4x + 3}} + \dfrac{3}{{3y + 2}} + \dfrac{2}{{2z + 1}} \ge 2\). Tìm giá trị lớn nhất của biểu thức \(Q = \left( {4x - 1} \right)\left( {3y - 1} \right)\left( {2z - 1} \right)\). 

    Câu I (2,0 điểm):

    Phương pháp:

    1) Vận dụng hẳng đẳng thức \(a - b = \left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)\) xác định mẫu thức chung của biểu thức \(P\)

    Thực hiện các phép toán với các phân thức đại số để rút bọn biểu thức ban đầu.

    2) Quy đồng phân thức, giải phương trình tìm được nghiệm đối chiếu điều kiện và kết luận.

    Cách giải:

    1) Với \(x \ge 0,\,\,x \ne 25\) ta có:

    \(\begin{array}{l}P = \dfrac{{\sqrt x }}{{\sqrt x + 5}} + \dfrac{{2\sqrt x }}{{\sqrt x - 5}} - \dfrac{{3x + 25}}{{x - 25}}\\\,\,\,\,\, = \dfrac{{\sqrt x \left( {\sqrt x - 5} \right) + 2\sqrt x \left( {\sqrt x + 5} \right) - 3x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}\\\,\,\,\,\, = \dfrac{{x - 5\sqrt x + 2x + 10\sqrt x - 3x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}\\\,\,\,\,\, = \dfrac{{5\sqrt x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}} = \dfrac{{5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}} = \dfrac{5}{{\sqrt x + 5}}\end{array}\)

    Vậy \(P = \dfrac{5}{{\sqrt x + 5}}\) với \(x \ge 0,\,\,x \ne 25\).

    2) Ta có: \(P = \dfrac{5}{{\sqrt x + 5}}\) với \(x \ge 0,\,\,x \ne 25\)

    \(\begin{array}{l}P = \dfrac{5}{7} \Leftrightarrow \dfrac{5}{{\sqrt x + 5}} = \dfrac{5}{7}\\ \Leftrightarrow \sqrt x + 5 = 7 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right)\end{array}\)

    Vậy \(x = 4\) thỏa mãn yêu cầu bài toán.

    Câu II (2,0 điểm)

    Phương pháp:

    1) Thay tọa độ điểm \(A\left( {1;5} \right)\) vào đường thẳng \(\left( d \right)\), tìm được tham số \(m\).

    2) Vận dụng phương pháp cộng đại số để tìm nghiệm của hệ phương trình.

    Cách giải:

    1) Vì \(A\left( {1;5} \right) \in d\) nên thay tọa độ điểm \(A\) vào phương trình đường thẳng \(\left( d \right)\) ta có:

    \(5 = \left( {2m + 1} \right).1 + m \Leftrightarrow 3m + 1 = 5 \Leftrightarrow m = \dfrac{4}{3}\).

    Vậy \(m = \dfrac{4}{3}\).

    2) Ta có: \(\left\{ \begin{array}{l}4x + 3y = 11\\4x - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4y = 4\\4x - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\4x - 1 = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = 2\end{array} \right.\)

    Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {2;1} \right)\).

    Câu III (2,0 điểm):

    Phương pháp:

    1) Vận dụng công thức nghiệm của phương trình bậc hai một ẩn số xác định được nghiệm của phương trình.

    2) Phương trình đã cho có nghiệm \( \Leftrightarrow \Delta ' \ge 0\).

    Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\)

    Biến đổi biểu thức ban đầu của đề bài để xuất hiện \({x_1} + {x_2};{x_1}.{x_2}\), thay tham số \(m\) vào để giải và tìm tham số \(m\).

    Cách giải:

    1) Ta có: \(\Delta = {\left( { - 6} \right)^2} - 4.1.5 = 16 > 0\) nên phương trình có 2 nghiệm phân biệt: \(\left[ \begin{array}{l}{x_1} = \dfrac{{6 + \sqrt {16} }}{2} = 5\\{x_2} = \dfrac{{6 - \sqrt {16} }}{2} = 1\end{array} \right.\)

    Vậy phương trình có tập nghiệm \(S = \left\{ {1;\,\,5} \right\}\).

    2) Phương trình \({x^2} - 2x + m - 1 = 0\) có \(\Delta ' = 1 - m + 1 = 2 - m\).

    Phương trình đã cho có nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 2 - m \ge 0 \Leftrightarrow m \le 2\).

    Khi đó theo định lí Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = m - 1}\end{array}} \right.\,\,\left( 1 \right)\)

    Do \({x_1},\,\,\,{x_2}\) là nghiệm của phương trình \({x^2} - 2x + m - 1 = 0\) nên ta có: \(\left\{ \begin{array}{l}{x_1}^2 = 2{x_1} - m + 1\\{x_2}^2 = 2{x_2} - m + 1\end{array} \right.\)

    Theo bài ra ta có:

     \(\begin{array}{l}\,\,\,\,\,\,\,{x_1}^4 - {x_1}^3 = {x_2}^4 - {x_2}^3\\ \Leftrightarrow {x_1}^4 - {x_2}^4 - \left( {{x_1}^3 - {x_2}^3} \right) = 0\\ \Leftrightarrow \left( {{x_1}^2 + {x_2}^2} \right)\left( {{x_1}^2 - {x_2}^2} \right) - \left( {{x_1} - {x_2}} \right)\left( {{x_1}^2 + {x_1}{x_2} + {x_2}^2} \right) = 0\\ \Rightarrow \left( {2\left( {{x_1} + {x_2}} \right) - 2m + 2} \right)\left( {2{x_1} - m + 1 - 2{x_2} + m - 1} \right) - \left( {{x_1} - {x_2}} \right)\left[ {2\left( {{x_1} + {x_2}} \right) - 2m + 2 + m - 1} \right]\\ \Leftrightarrow \left[ {2.2 - 2m + 2} \right].2\left( {{x_1} - {x_2}} \right) - \left( {{x_1} - {x_2}} \right)\left[ {2.2 - m + 1} \right]\\ \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left[ {2\left( {6 - 2m} \right) - 5 + m} \right] = 0\\ \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {3m + 7} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_1} = {x_2}}\\{m = \dfrac{7}{3}\,\,\,\left( {ktm} \right)}\end{array}} \right.\end{array}\)

    Thay \({x_1} = {x_2}\) vào (1) ta được: \(\left\{ {\begin{array}{*{20}{c}}{2{x_1} = 2}\\{{x_1}^2 = m - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} = 1}\\{m = 2\,\,\,\left( {tm} \right)}\end{array}} \right.\)

    Vậy \(m = 2.\)

    Câu IV (3,0 điểm):

    Phương pháp:

    1) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

    2) Gọi I là trung điểm của AH suy ra I là tâm đường tròn ngoại tiếp tứ giác AEHF.

    Chứng minh \(\angle MFI = {90^0}\) hay \(IF \bot MF\), do đó \(MF\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\)

    Chứng minh tương tự ta được \(ME\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\).

    Cách giải:

    Đề thi vào 10 môn Toán Thanh Hóa năm 2021 1

    1) Xét tứ giác AEHF có: \(\angle AFH + \angle AEH = {90^0} + {90^0} = {180^0}\)

    Mà hai góc này đối diện nhau trong tứ giác \(AEHF\) nên tứ giác \(AEHF\) là tứ giác nội tiếp đường tròn tâm \(M\) đường kính \(BC\) (dhnb).

    2) Gọi I là trung điểm của AH suy ra I là tâm đường tròn ngoại tiếp tứ giác AEHF.

    \( \Rightarrow IH = IF\) \( \Rightarrow \Delta H\) cân tại I \( \Rightarrow \angle IFH = \angle IHF\) (tính chất tam giác cân).

    Mà \(\angle IHF = \angle DHC\) (đối đỉnh) \( \Rightarrow \angle IFH = \angle DHC\) (1)

    Do \(\Delta BFC\) vuông tại F, M là trung điểm của BC nên \(MF = \dfrac{1}{2}BC = MC\) (định lí đường trung tuyến trong tam giác vuông) \( \Rightarrow \Delta MFC\) cân tại \(M\) \( \Rightarrow \angle MFH = \angle MCF\) (2)

    Cộng (1) với (2) ta được: \(\angle MFH + \angle IFH = \angle DHC + \angle MCF = {90^0}\) (Do tam giác \(CDH\) vuông tại \(D\)).

    Suy ra: \(\angle MFI = {90^0}\) hay \(IF \bot MF\).

    Vậy \(MF\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\).

    Chứng minh tương tự ta được \(ME\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\).

    3) Giả sử \(DE + DF \le BC \Leftrightarrow \left( {DE + DF} \right).BC \le B{C^2} \Leftrightarrow DE.BC + DF.BC \le B{C^2}\).

    Chứng minh \(B{C^2} = BF.BA + CE.CA\)

    Chứng minh \(DF.BC = AC.BF\) và \(DE.BC = AB.CE\), cộng từng vế của hai đẳng thức chứng minh được \(\left( {CE - BF} \right)\left( {AC - AB} \right) \ge 0\,\,\,\left( * \right)\)

    Biện luận, từ đó có điều phải chứng minh.

    3) Giả sử \(DE + DF \le BC \Leftrightarrow \left( {DE + DF} \right).BC \le B{C^2} \Leftrightarrow DE.BC + DF.BC \le B{C^2}\).

    Dễ dàng chứng minh được các tứ giác \(ACDF,\,\,ABDE\) là các tứ giác nội tiếp nên ta có:

    \(\begin{array}{l}B{C^2} = \left( {BD + CD} \right).BC\\\,\,\,\,\,\,\,\,\,\, = BD.BC + CB.CD\\\,\,\,\,\,\,\,\,\,\, = BF.BA + CE.CA\end{array}\)

    Xét \(\Delta BDF\) và \(\Delta BAC\) có:

    \(\angle ABC\) chung;

    \(\angle BFD = \angle BCA\) (góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp \(ACDF\))

    \( \Rightarrow \Delta BDF \sim \Delta BAC\,\,\left( {g.g} \right)\)

    \( \Rightarrow \dfrac{{DF}}{{AC}} = \dfrac{{BF}}{{BC}} \Rightarrow DF.BC = AC.BF\) (1)

    Chứng minh tương tự ta có \(\Delta CDE \sim \Delta CAB\,\,\left( {g.g} \right)\) \( \Rightarrow \dfrac{{DE}}{{AB}} = \dfrac{{CE}}{{BC}} \Rightarrow DE.BC = AB.CE\) (2)

    Cộng vế theo vế của (1) và (2) ta có:

    \(\begin{array}{l}DF.BC + DE.BC = AC.BF + AB.CE\\ \Rightarrow \left( {DE + DF} \right).BC = AC.BF + AB.CE\end{array}\)

    Vì \(\left( {DE + DF} \right).BC \le B{C^2}\)

    \(\begin{array}{l} \Rightarrow AC.BF + AB.CE \le BF.BA + CE.CA\\ \Rightarrow BF.BA + CE.CA - AC.BF - AB.CE \ge 0\\ \Leftrightarrow AC\left( {CE - BF} \right) + AB\left( {BF - CE} \right) \ge 0\\ \Leftrightarrow \left( {CE - BF} \right)\left( {AC - AB} \right) \ge 0\,\,\,\left( * \right)\end{array}\)

    Không mất tính tổng quát, ta giả sử \(AC \ge AB\), khi đó ta cần chứng minh \(CE - BF \ge 0 \Leftrightarrow CE \ge BF\).

    Áp dụng định lí Pytago ta có: \(\left\{ \begin{array}{l}C{E^2} = B{C^2} - B{E^2}\\B{F^2} = B{C^2} - C{F^2}\end{array} \right.\).

    Mà \(\left\{ \begin{array}{l}2{S_{\Delta ABC}} = BE.AC = CF.AB\\AB \le AC\end{array} \right. \Leftrightarrow BE \le CF\) .

    \( \Rightarrow C{E^2} \ge B{F^2} \Rightarrow CE \ge BF\) \( \Rightarrow \left( * \right)\) đúng nên giả sử ban đầu là đúng.

    Vậy \(DE + DF \le BC\).

    Câu V (1,0 điểm):

    Phương pháp:

    Áp dụng bất đẳng thức Cô – si, chứng minh được:\(\dfrac{4}{{4x + 3}} \ge 2\sqrt {\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}} \);\(\dfrac{3}{{3y + 2}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{2z - 1}}{{2z + 1}}} \); \(\dfrac{2}{{2z + 1}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}} \)

    Nhân vế theo vế 3 BĐT trên ta được điều phải chứng minh.

    Cách giải:

    Ta có:

    \(\begin{array}{l}\,\,\,\,\,\,\dfrac{4}{{4x + 3}} + \dfrac{3}{{3y + 2}} + \dfrac{2}{{2z + 1}} \ge 2\\ \Leftrightarrow \dfrac{4}{{4x + 3}} \ge \left( {1 - \dfrac{3}{{3y + 2}}} \right) + \left( {1 - \dfrac{2}{{2z + 1}}} \right)\\ \Leftrightarrow \dfrac{4}{{4x + 3}} \ge \dfrac{{3y - 1}}{{3y + 2}} + \dfrac{{2z - 1}}{{2z + 1}}\\ \Leftrightarrow \dfrac{4}{{4x + 3}} \ge 2\sqrt {\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}} \,\,\left( {BDT\,\,Co - si} \right)\end{array}\)

    Chứng minh tương tự ta có:

    \(\dfrac{3}{{3y + 2}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{2z - 1}}{{2z + 1}}} ;\,\,\dfrac{2}{{2z + 1}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}} \)

    Nhân vế theo vế 3 BĐT trên ta được:

    \(\begin{array}{l}\dfrac{4}{{4x + 3}}.\dfrac{3}{{3y + 2}}.\dfrac{2}{{2z + 1}} \ge 2\sqrt {\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}} .2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{2z - 1}}{{2z + 1}}} .2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}} \\ \Leftrightarrow \dfrac{4}{{4x + 3}}.\dfrac{3}{{3y + 2}}.\dfrac{2}{{2z + 1}} \ge 8\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}\\ \Leftrightarrow 24 \ge 8Q \Leftrightarrow Q \le 3\end{array}\)

    Vậy \({Q_{\max }} = 3\). Dấu “=” xảy ra \( \Leftrightarrow \left( {x;y;z} \right) = \left( {\dfrac{3}{4};\dfrac{5}{6};1} \right)\). 

    Lời giải chi tiết

      Câu I (2,0 điểm):

      Phương pháp:

      1) Vận dụng hẳng đẳng thức \(a - b = \left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)\) xác định mẫu thức chung của biểu thức \(P\)

      Thực hiện các phép toán với các phân thức đại số để rút bọn biểu thức ban đầu.

      2) Quy đồng phân thức, giải phương trình tìm được nghiệm đối chiếu điều kiện và kết luận.

      Cách giải:

      1) Với \(x \ge 0,\,\,x \ne 25\) ta có:

      \(\begin{array}{l}P = \dfrac{{\sqrt x }}{{\sqrt x + 5}} + \dfrac{{2\sqrt x }}{{\sqrt x - 5}} - \dfrac{{3x + 25}}{{x - 25}}\\\,\,\,\,\, = \dfrac{{\sqrt x \left( {\sqrt x - 5} \right) + 2\sqrt x \left( {\sqrt x + 5} \right) - 3x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}\\\,\,\,\,\, = \dfrac{{x - 5\sqrt x + 2x + 10\sqrt x - 3x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}\\\,\,\,\,\, = \dfrac{{5\sqrt x - 25}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}} = \dfrac{{5\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}} = \dfrac{5}{{\sqrt x + 5}}\end{array}\)

      Vậy \(P = \dfrac{5}{{\sqrt x + 5}}\) với \(x \ge 0,\,\,x \ne 25\).

      2) Ta có: \(P = \dfrac{5}{{\sqrt x + 5}}\) với \(x \ge 0,\,\,x \ne 25\)

      \(\begin{array}{l}P = \dfrac{5}{7} \Leftrightarrow \dfrac{5}{{\sqrt x + 5}} = \dfrac{5}{7}\\ \Leftrightarrow \sqrt x + 5 = 7 \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right)\end{array}\)

      Vậy \(x = 4\) thỏa mãn yêu cầu bài toán.

      Câu II (2,0 điểm)

      Phương pháp:

      1) Thay tọa độ điểm \(A\left( {1;5} \right)\) vào đường thẳng \(\left( d \right)\), tìm được tham số \(m\).

      2) Vận dụng phương pháp cộng đại số để tìm nghiệm của hệ phương trình.

      Cách giải:

      1) Vì \(A\left( {1;5} \right) \in d\) nên thay tọa độ điểm \(A\) vào phương trình đường thẳng \(\left( d \right)\) ta có:

      \(5 = \left( {2m + 1} \right).1 + m \Leftrightarrow 3m + 1 = 5 \Leftrightarrow m = \dfrac{4}{3}\).

      Vậy \(m = \dfrac{4}{3}\).

      2) Ta có: \(\left\{ \begin{array}{l}4x + 3y = 11\\4x - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4y = 4\\4x - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\4x - 1 = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = 2\end{array} \right.\)

      Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {2;1} \right)\).

      Câu III (2,0 điểm):

      Phương pháp:

      1) Vận dụng công thức nghiệm của phương trình bậc hai một ẩn số xác định được nghiệm của phương trình.

      2) Phương trình đã cho có nghiệm \( \Leftrightarrow \Delta ' \ge 0\).

      Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\)

      Biến đổi biểu thức ban đầu của đề bài để xuất hiện \({x_1} + {x_2};{x_1}.{x_2}\), thay tham số \(m\) vào để giải và tìm tham số \(m\).

      Cách giải:

      1) Ta có: \(\Delta = {\left( { - 6} \right)^2} - 4.1.5 = 16 > 0\) nên phương trình có 2 nghiệm phân biệt: \(\left[ \begin{array}{l}{x_1} = \dfrac{{6 + \sqrt {16} }}{2} = 5\\{x_2} = \dfrac{{6 - \sqrt {16} }}{2} = 1\end{array} \right.\)

      Vậy phương trình có tập nghiệm \(S = \left\{ {1;\,\,5} \right\}\).

      2) Phương trình \({x^2} - 2x + m - 1 = 0\) có \(\Delta ' = 1 - m + 1 = 2 - m\).

      Phương trình đã cho có nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 2 - m \ge 0 \Leftrightarrow m \le 2\).

      Khi đó theo định lí Vi-ét ta có: \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = m - 1}\end{array}} \right.\,\,\left( 1 \right)\)

      Do \({x_1},\,\,\,{x_2}\) là nghiệm của phương trình \({x^2} - 2x + m - 1 = 0\) nên ta có: \(\left\{ \begin{array}{l}{x_1}^2 = 2{x_1} - m + 1\\{x_2}^2 = 2{x_2} - m + 1\end{array} \right.\)

      Theo bài ra ta có:

       \(\begin{array}{l}\,\,\,\,\,\,\,{x_1}^4 - {x_1}^3 = {x_2}^4 - {x_2}^3\\ \Leftrightarrow {x_1}^4 - {x_2}^4 - \left( {{x_1}^3 - {x_2}^3} \right) = 0\\ \Leftrightarrow \left( {{x_1}^2 + {x_2}^2} \right)\left( {{x_1}^2 - {x_2}^2} \right) - \left( {{x_1} - {x_2}} \right)\left( {{x_1}^2 + {x_1}{x_2} + {x_2}^2} \right) = 0\\ \Rightarrow \left( {2\left( {{x_1} + {x_2}} \right) - 2m + 2} \right)\left( {2{x_1} - m + 1 - 2{x_2} + m - 1} \right) - \left( {{x_1} - {x_2}} \right)\left[ {2\left( {{x_1} + {x_2}} \right) - 2m + 2 + m - 1} \right]\\ \Leftrightarrow \left[ {2.2 - 2m + 2} \right].2\left( {{x_1} - {x_2}} \right) - \left( {{x_1} - {x_2}} \right)\left[ {2.2 - m + 1} \right]\\ \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left[ {2\left( {6 - 2m} \right) - 5 + m} \right] = 0\\ \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {3m + 7} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{x_1} = {x_2}}\\{m = \dfrac{7}{3}\,\,\,\left( {ktm} \right)}\end{array}} \right.\end{array}\)

      Thay \({x_1} = {x_2}\) vào (1) ta được: \(\left\{ {\begin{array}{*{20}{c}}{2{x_1} = 2}\\{{x_1}^2 = m - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} = 1}\\{m = 2\,\,\,\left( {tm} \right)}\end{array}} \right.\)

      Vậy \(m = 2.\)

      Câu IV (3,0 điểm):

      Phương pháp:

      1) Vận dụng dấu hiệu nhận biết của tứ giác nội tiếp: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

      2) Gọi I là trung điểm của AH suy ra I là tâm đường tròn ngoại tiếp tứ giác AEHF.

      Chứng minh \(\angle MFI = {90^0}\) hay \(IF \bot MF\), do đó \(MF\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\)

      Chứng minh tương tự ta được \(ME\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\).

      Cách giải:

      Đề thi vào 10 môn Toán Thanh Hóa năm 2021 1 1

      1) Xét tứ giác AEHF có: \(\angle AFH + \angle AEH = {90^0} + {90^0} = {180^0}\)

      Mà hai góc này đối diện nhau trong tứ giác \(AEHF\) nên tứ giác \(AEHF\) là tứ giác nội tiếp đường tròn tâm \(M\) đường kính \(BC\) (dhnb).

      2) Gọi I là trung điểm của AH suy ra I là tâm đường tròn ngoại tiếp tứ giác AEHF.

      \( \Rightarrow IH = IF\) \( \Rightarrow \Delta H\) cân tại I \( \Rightarrow \angle IFH = \angle IHF\) (tính chất tam giác cân).

      Mà \(\angle IHF = \angle DHC\) (đối đỉnh) \( \Rightarrow \angle IFH = \angle DHC\) (1)

      Do \(\Delta BFC\) vuông tại F, M là trung điểm của BC nên \(MF = \dfrac{1}{2}BC = MC\) (định lí đường trung tuyến trong tam giác vuông) \( \Rightarrow \Delta MFC\) cân tại \(M\) \( \Rightarrow \angle MFH = \angle MCF\) (2)

      Cộng (1) với (2) ta được: \(\angle MFH + \angle IFH = \angle DHC + \angle MCF = {90^0}\) (Do tam giác \(CDH\) vuông tại \(D\)).

      Suy ra: \(\angle MFI = {90^0}\) hay \(IF \bot MF\).

      Vậy \(MF\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\).

      Chứng minh tương tự ta được \(ME\) là tiếp tuyến của đường tròn ngoại tiếp tứ giác \(AEHF\).

      3) Giả sử \(DE + DF \le BC \Leftrightarrow \left( {DE + DF} \right).BC \le B{C^2} \Leftrightarrow DE.BC + DF.BC \le B{C^2}\).

      Chứng minh \(B{C^2} = BF.BA + CE.CA\)

      Chứng minh \(DF.BC = AC.BF\) và \(DE.BC = AB.CE\), cộng từng vế của hai đẳng thức chứng minh được \(\left( {CE - BF} \right)\left( {AC - AB} \right) \ge 0\,\,\,\left( * \right)\)

      Biện luận, từ đó có điều phải chứng minh.

      3) Giả sử \(DE + DF \le BC \Leftrightarrow \left( {DE + DF} \right).BC \le B{C^2} \Leftrightarrow DE.BC + DF.BC \le B{C^2}\).

      Dễ dàng chứng minh được các tứ giác \(ACDF,\,\,ABDE\) là các tứ giác nội tiếp nên ta có:

      \(\begin{array}{l}B{C^2} = \left( {BD + CD} \right).BC\\\,\,\,\,\,\,\,\,\,\, = BD.BC + CB.CD\\\,\,\,\,\,\,\,\,\,\, = BF.BA + CE.CA\end{array}\)

      Xét \(\Delta BDF\) và \(\Delta BAC\) có:

      \(\angle ABC\) chung;

      \(\angle BFD = \angle BCA\) (góc ngoài và góc trong tại đỉnh đối diện của tứ giác nội tiếp \(ACDF\))

      \( \Rightarrow \Delta BDF \sim \Delta BAC\,\,\left( {g.g} \right)\)

      \( \Rightarrow \dfrac{{DF}}{{AC}} = \dfrac{{BF}}{{BC}} \Rightarrow DF.BC = AC.BF\) (1)

      Chứng minh tương tự ta có \(\Delta CDE \sim \Delta CAB\,\,\left( {g.g} \right)\) \( \Rightarrow \dfrac{{DE}}{{AB}} = \dfrac{{CE}}{{BC}} \Rightarrow DE.BC = AB.CE\) (2)

      Cộng vế theo vế của (1) và (2) ta có:

      \(\begin{array}{l}DF.BC + DE.BC = AC.BF + AB.CE\\ \Rightarrow \left( {DE + DF} \right).BC = AC.BF + AB.CE\end{array}\)

      Vì \(\left( {DE + DF} \right).BC \le B{C^2}\)

      \(\begin{array}{l} \Rightarrow AC.BF + AB.CE \le BF.BA + CE.CA\\ \Rightarrow BF.BA + CE.CA - AC.BF - AB.CE \ge 0\\ \Leftrightarrow AC\left( {CE - BF} \right) + AB\left( {BF - CE} \right) \ge 0\\ \Leftrightarrow \left( {CE - BF} \right)\left( {AC - AB} \right) \ge 0\,\,\,\left( * \right)\end{array}\)

      Không mất tính tổng quát, ta giả sử \(AC \ge AB\), khi đó ta cần chứng minh \(CE - BF \ge 0 \Leftrightarrow CE \ge BF\).

      Áp dụng định lí Pytago ta có: \(\left\{ \begin{array}{l}C{E^2} = B{C^2} - B{E^2}\\B{F^2} = B{C^2} - C{F^2}\end{array} \right.\).

      Mà \(\left\{ \begin{array}{l}2{S_{\Delta ABC}} = BE.AC = CF.AB\\AB \le AC\end{array} \right. \Leftrightarrow BE \le CF\) .

      \( \Rightarrow C{E^2} \ge B{F^2} \Rightarrow CE \ge BF\) \( \Rightarrow \left( * \right)\) đúng nên giả sử ban đầu là đúng.

      Vậy \(DE + DF \le BC\).

      Câu V (1,0 điểm):

      Phương pháp:

      Áp dụng bất đẳng thức Cô – si, chứng minh được:\(\dfrac{4}{{4x + 3}} \ge 2\sqrt {\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}} \);\(\dfrac{3}{{3y + 2}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{2z - 1}}{{2z + 1}}} \); \(\dfrac{2}{{2z + 1}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}} \)

      Nhân vế theo vế 3 BĐT trên ta được điều phải chứng minh.

      Cách giải:

      Ta có:

      \(\begin{array}{l}\,\,\,\,\,\,\dfrac{4}{{4x + 3}} + \dfrac{3}{{3y + 2}} + \dfrac{2}{{2z + 1}} \ge 2\\ \Leftrightarrow \dfrac{4}{{4x + 3}} \ge \left( {1 - \dfrac{3}{{3y + 2}}} \right) + \left( {1 - \dfrac{2}{{2z + 1}}} \right)\\ \Leftrightarrow \dfrac{4}{{4x + 3}} \ge \dfrac{{3y - 1}}{{3y + 2}} + \dfrac{{2z - 1}}{{2z + 1}}\\ \Leftrightarrow \dfrac{4}{{4x + 3}} \ge 2\sqrt {\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}} \,\,\left( {BDT\,\,Co - si} \right)\end{array}\)

      Chứng minh tương tự ta có:

      \(\dfrac{3}{{3y + 2}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{2z - 1}}{{2z + 1}}} ;\,\,\dfrac{2}{{2z + 1}} \ge 2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}} \)

      Nhân vế theo vế 3 BĐT trên ta được:

      \(\begin{array}{l}\dfrac{4}{{4x + 3}}.\dfrac{3}{{3y + 2}}.\dfrac{2}{{2z + 1}} \ge 2\sqrt {\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}} .2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{2z - 1}}{{2z + 1}}} .2\sqrt {\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}} \\ \Leftrightarrow \dfrac{4}{{4x + 3}}.\dfrac{3}{{3y + 2}}.\dfrac{2}{{2z + 1}} \ge 8\dfrac{{4x - 1}}{{4x + 3}}.\dfrac{{3y - 1}}{{3y + 2}}.\dfrac{{2z - 1}}{{2z + 1}}\\ \Leftrightarrow 24 \ge 8Q \Leftrightarrow Q \le 3\end{array}\)

      Vậy \({Q_{\max }} = 3\). Dấu “=” xảy ra \( \Leftrightarrow \left( {x;y;z} \right) = \left( {\dfrac{3}{4};\dfrac{5}{6};1} \right)\). 

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Thanh Hóa năm 2021 đặc sắc thuộc chuyên mục giải bài tập toán 9 trên nền tảng toán math. Với bộ bài tập toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Thanh Hóa năm 2021: Tổng quan và phân tích

      Kỳ thi tuyển sinh vào lớp 10 môn Toán tại Thanh Hóa năm 2021 là một kỳ thi quan trọng đánh giá năng lực học tập của học sinh sau nhiều năm học tập ở cấp trung học cơ sở. Đề thi thường bao gồm các dạng bài tập thuộc nhiều chủ đề khác nhau, đòi hỏi học sinh phải có kiến thức vững chắc và kỹ năng giải quyết vấn đề tốt.

      Cấu trúc đề thi vào 10 môn Toán Thanh Hóa 2021

      Nhìn chung, cấu trúc đề thi vào 10 môn Toán Thanh Hóa 2021 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và khả năng tính toán nhanh.
      • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, bao gồm các bài toán đại số, hình học và số học. Các bài toán tự luận thường yêu cầu học sinh phải trình bày lời giải chi tiết và rõ ràng.

      Các chủ đề thường xuất hiện trong đề thi

      Dưới đây là một số chủ đề thường xuyên xuất hiện trong đề thi vào 10 môn Toán Thanh Hóa:

      • Đại số: Phương trình bậc nhất, phương trình bậc hai, hệ phương trình, bất phương trình, hàm số.
      • Hình học: Tam giác, tứ giác, đường tròn, hệ tọa độ.
      • Số học: Số nguyên tố, ước chung, bội chung, phân số, tỉ lệ thức.
      • Toán thực tế: Các bài toán ứng dụng vào thực tế cuộc sống.

      Luyện thi vào 10 môn Toán Thanh Hóa 2021 hiệu quả

      Để đạt kết quả tốt trong kỳ thi vào 10 môn Toán Thanh Hóa, học sinh cần có một kế hoạch ôn tập khoa học và hiệu quả. Dưới đây là một số lời khuyên:

      1. Nắm vững kiến thức cơ bản: Đảm bảo hiểu rõ các khái niệm, định lý và công thức trong chương trình học.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán và làm quen với các dạng bài tập thường gặp.
      3. Ôn tập theo chủ đề: Chia nhỏ chương trình học thành các chủ đề nhỏ và ôn tập từng chủ đề một cách kỹ lưỡng.
      4. Làm đề thi thử: Giải các đề thi thử để làm quen với cấu trúc đề thi, thời gian làm bài và đánh giá năng lực của bản thân.
      5. Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn trong quá trình ôn tập, hãy tìm kiếm sự giúp đỡ từ giáo viên, bạn bè hoặc các trung tâm luyện thi.

      Tài liệu ôn thi vào 10 môn Toán Thanh Hóa 2021

      Có rất nhiều tài liệu ôn thi vào 10 môn Toán Thanh Hóa mà học sinh có thể tham khảo, bao gồm:

      • Sách giáo khoa: Sách giáo khoa Toán lớp 9 là tài liệu cơ bản nhất để ôn tập.
      • Sách bài tập: Sách bài tập Toán lớp 9 cung cấp nhiều bài tập khác nhau để luyện tập.
      • Đề thi thử: Các đề thi thử do các trường học, trung tâm luyện thi hoặc các trang web giáo dục cung cấp.
      • Các trang web giáo dục: Giaitoan.edu.vn là một trong những trang web giáo dục uy tín cung cấp đầy đủ các tài liệu ôn thi vào 10 môn Toán Thanh Hóa.

      Giaitoan.edu.vn: Đồng hành cùng bạn trên con đường chinh phục kỳ thi

      Giaitoan.edu.vn tự hào là một trong những trang web giáo dục hàng đầu Việt Nam, cung cấp đầy đủ các tài liệu ôn thi vào 10 môn Toán Thanh Hóa, bao gồm:

      • Đề thi vào 10 môn Toán Thanh Hóa năm 2021 chính thức.
      • Đáp án và lời giải chi tiết.
      • Các bài giảng video hướng dẫn giải toán.
      • Các bài tập luyện tập theo chủ đề.

      Hãy truy cập giaitoan.edu.vn ngay hôm nay để bắt đầu hành trình chinh phục kỳ thi vào 10 môn Toán Thanh Hóa!

      Bảng tổng hợp điểm chuẩn vào 10 các trường THPT Thanh Hóa (tham khảo)

      Trường THPTĐiểm chuẩn (2020)
      Lam Sơn36.5
      Ba Đình35.5
      Hương Hoá34.0
      *Lưu ý: Điểm chuẩn có thể thay đổi theo từng năm.

      Tài liệu, đề thi và đáp án Toán 9