Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Hà Nội năm 2021

Đề thi vào 10 môn Toán Hà Nội năm 2021

Đề thi vào 10 môn Toán Hà Nội năm 2021: Cập nhật mới nhất

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán của Hà Nội năm 2021. Đây là tài liệu ôn tập vô cùng quan trọng dành cho các em học sinh đang chuẩn bị cho kỳ thi sắp tới.

Chúng tôi cung cấp đầy đủ các đề thi chính thức, đáp án chi tiết và phương pháp giải bài tập hiệu quả. Hãy cùng giaitoan.edu.vn chinh phục kỳ thi vào 10 môn Toán một cách tự tin nhất!

Bài I (2 điểm): Cho hai biểu thức

Đề bài

    Bài I (2 điểm):

    Cho hai biểu thức \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\) và \(B = \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\) với \(x \ge 0,\,\,x \ne 9\).

    1) Tính giá trị của biểu thức \(A\) khi \(x = 16\).

    2) Chứng minh \(A + B = \dfrac{3}{{\sqrt x + 3}}\). 

    Bài II (2,5 điểm):

    1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

    Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết thời hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đó làm xong trong mỗi ngày là bằng nhau).

    2) Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy \(\pi \approx 3,14\)).

    Bài III (2,0 điểm)

    1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{3}{{x + 1}} - 2y = - 1}\\{\dfrac{5}{{x + 1}} + 3y = 11}\end{array}} \right.\)

    2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2x + m - 2\). Tìm tất cả các giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,{x_2}\) sao cho \(\left| {{x_1} - {x_2}} \right| = 2\).

    Bài IV (3,5 điểm)

    Cho tam giác \(ABC\) vuông tại \(A\). Vẽ đường tròn tâm \(C\), bán kính \(CA\). Từ điểm \(B\) kẻ tiếp tuyến \(BM\) với đường tròn \(\left( {C;CA} \right)\) (\(M\) là tiếp điểm, \(M\) và \(A\)nằm khác phía nhau đối với đường thẳng \(BC\)).

    1) Chứng minh bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn.

    2) Lấy điểm \(N\) thuộc đoạn thẳng \(AB\)( \(N\) khác \(A\), \(N\) khác \(B\)). Lấy điểm \(P\) thuộc tia đối của \(MB\) sao cho \(MP = AN\). Chứng minh tam giác \(CPN\) là tam giác cân và đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\)

    Bài V (0,5 điểm)

    Với các số thực \(a\) và \(b\) thỏa mãn \({a^2} + {b^2} = 2\), tìm giá trị nhỏ nhất của biểu thức \(P = 3\left( {a + b} \right) + ab\).

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải chi tiết
    • Tải về

    Bài I (2 điểm):

    Cho hai biểu thức \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\) và \(B = \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\) với \(x \ge 0,\,\,x \ne 9\).

    1) Tính giá trị của biểu thức \(A\) khi \(x = 16\).

    2) Chứng minh \(A + B = \dfrac{3}{{\sqrt x + 3}}\). 

    Bài II (2,5 điểm):

    1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

    Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết thời hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đó làm xong trong mỗi ngày là bằng nhau).

    2) Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy \(\pi \approx 3,14\)).

    Bài III (2,0 điểm)

    1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{3}{{x + 1}} - 2y = - 1}\\{\dfrac{5}{{x + 1}} + 3y = 11}\end{array}} \right.\)

    2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2x + m - 2\). Tìm tất cả các giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,{x_2}\) sao cho \(\left| {{x_1} - {x_2}} \right| = 2\).

    Bài IV (3,5 điểm)

    Cho tam giác \(ABC\) vuông tại \(A\). Vẽ đường tròn tâm \(C\), bán kính \(CA\). Từ điểm \(B\) kẻ tiếp tuyến \(BM\) với đường tròn \(\left( {C;CA} \right)\) (\(M\) là tiếp điểm, \(M\) và \(A\)nằm khác phía nhau đối với đường thẳng \(BC\)).

    1) Chứng minh bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn.

    2) Lấy điểm \(N\) thuộc đoạn thẳng \(AB\)( \(N\) khác \(A\), \(N\) khác \(B\)). Lấy điểm \(P\) thuộc tia đối của \(MB\) sao cho \(MP = AN\). Chứng minh tam giác \(CPN\) là tam giác cân và đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\)

    Bài V (0,5 điểm)

    Với các số thực \(a\) và \(b\) thỏa mãn \({a^2} + {b^2} = 2\), tìm giá trị nhỏ nhất của biểu thức \(P = 3\left( {a + b} \right) + ab\).

    Bài I

    Cho hai biểu thức \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\) và \(B = \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\) với \(x \ge 0,\,\,x \ne 9\).

    1) Tính giá trị của biểu thức \(A\) khi \(x = 16\).

    2) Chứng minh \(A + B = \dfrac{3}{{\sqrt x + 3}}\).

    Phương pháp:

    1) Thay giá trị \(x = 16\,\,\left( {tmdk} \right)\) vào biểu thức \(A\) rồi tính giá trị của biểu thức.

    2) Quy đồng, biến đổi và rút gọn biểu thức \(A + B.\)

    Từ đó chứng minh được giá trị của \(A + B = \dfrac{3}{{\sqrt x + 3}}\)

    Cách giải:

    1) Điều kiện: \(x \ge 0,\,\,x \ne 9.\)

    Thay \(x = 16\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta có: 

    \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{{\sqrt {16} }}{{\sqrt {16} + 3}} = \dfrac{4}{{4 + 3}} = \dfrac{4}{7}\).

    Vậy khi \(x = 16\) thì \(A = \dfrac{4}{7}\).

    2) Điều kiện: \(x \ge 0,\,\,x \ne 9.\)

    \(\begin{array}{l}A + B = \dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt x \left( {\sqrt x - 3} \right) + 2\sqrt x \left( {\sqrt x + 3} \right) - 3x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3\sqrt x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{3}{{\sqrt x + 3}}\,\,\left( {dpcm} \right)\end{array}\)

    Vậy \(A + B = \dfrac{3}{{\sqrt x + 3}}\) (với \(x \ge 0,\,\,x \ne 9\)).

    Bài II

    1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

    Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết thời hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đó làm xong trong mỗi ngày là bằng nhau).

    2) Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy \(\pi \approx 3,14\)).

    Phương pháp:

    1) Gọi số bộ đồ bảo hộ y tế tổ sản xuất phải làm trong một ngày theo kế hoạch là \(x\) (bộ), \(\left( {x \in {\mathbb{N}^*}} \right).\)

    Biểu diễn các đại lượng chưa biết theo các đại lượng đã biết và ẩn \(x\) vừa gọi.

    Dựa vào giả thiết bài cho để lập phương trình.

    Giải phương trình tìm ẩn \(x\) và đối chiếu với điều kiện xác định.

    Kết luận.

    2) Sử dụng công thức tính diện tích xung quanh của hình trụ có chiều cao \(h\) và bán kính \(r\): \({S_{xq}} = 2\pi rh.\)

    Cách giải:

    1) Gọi số bộ đồ bảo hộ y tế tổ sản xuất phải làm trong một ngày theo kế hoạch là \(x\) (bộ), \(\left( {x \in {\mathbb{N}^*}} \right).\)

    \( \Rightarrow \) Thời gian theo kế hoạch tổ sản xuất làm xong \(4800\) bộ đồ là: \(\dfrac{{4800}}{x}\) (ngày).

    Thực tế mỗi ngày, tổ đó làm được số bộ đồ bảo hộ y tế là:\(x + 100\) (bộ).

    \( \Rightarrow \) Thời gian thực tế tổ sản xuất làm xong \(4800\) bộ đồ là: \(\dfrac{{4800}}{{x + 100}}\) (ngày).

    Theo đề bài, tổ sản xuất đã làm xong \(4800\) bộ đồ trước \(8\) ngày so với kế hoạch nên ta có phương trình:

    \(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{4800}}{x} - \dfrac{{4800}}{{x + 100}} = 8\\ \Leftrightarrow 4800\left( {x + 100} \right) - 4800x = 8x\left( {x + 100} \right)\\ \Leftrightarrow 600\left( {x + 100} \right) - 600x = x\left( {x + 100} \right)\\ \Leftrightarrow 600x + 60000 - 600x = {x^2} + 100x\\ \Leftrightarrow {x^2} + 100x - 60000 = 0\end{array}\)

    Phương trình có: \(\Delta ' = {50^2} + 60000 = 62500 > 0\)

    \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} = - 50 + \sqrt {62500} = 200\,\,\left( {tm} \right)\) và \({x_2} = - 50 + \sqrt {62500} = - 300\,\,\,\left( {ktm} \right)\)

    Vậy theo kế hoạch, mỗi ngày tổ sản xuất phải làm \(200\) bộ đồ bảo hộ y tế.

    2) Thùng nước hình trụ có chiều cao \(h = 1,6m\) và bán kính đáy \(R = 0,5m\).

    Diện tích bề mặt được sơn của thùng nước là:

    \(2\pi Rh = 2.3,14.0,5.1,6 = 5,024\,\,\,\,\left( {{m^2}} \right)\)

    Vậy diện tích bề mặt được sơn của thùng nước là \(5,024\,{m^2}\).

    Bài III

    1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{3}{{x + 1}} - 2y = - 1}\\{\dfrac{5}{{x + 1}} + 3y = 11}\end{array}} \right.\)

    2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2x + m - 2\). Tìm tất cả các giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,{x_2}\) sao cho \(\left| {{x_1} - {x_2}} \right| = 2\).

    Phương pháp:

    1) Đặt \(\dfrac{1}{{x + 1}} = t\), hệ phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{3t - 2y = - 1}\\{5t + 3y = 11}\end{array}} \right.\), sau đó sử dụng phương pháp cộng đại số để tìm ra \(t\) và \(y\) sau đó tìm ra nghiệm \(\left( {x;y} \right)\) của phương trình ban đầu.

    2) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\), tìm điều kiện để phương trình có 2 nghiệm phân biệt, sử dụng ứng dụng của định lí Vi – ét và điều kiện giả thiết của đề bài để tìm được các giá trị của \(m\).

    Cách giải:

    1) ĐKXĐ: \(x \ne - 1\).

    Đặt \(\dfrac{1}{{x + 1}} = t\), hệ phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{3t - 2y = - 1}\\{5t + 3y = 11}\end{array}} \right.\).

    Ta có \(\left\{ {\begin{array}{*{20}{c}}{3t - 2y = - 1}\\{5t + 3y = 11}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{9t - 6y = - 3}\\{10t + 6y = 22}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}19t = 19\\3t - 2y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\3 - 2y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\2y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\y = 2\end{array} \right.\).

    Với \(t = 1 \Rightarrow \dfrac{1}{{x + 1}} = 1 \Leftrightarrow x + 1 = 1 \Leftrightarrow x = 0\).

    Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {0;2} \right)\).

    2) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\):

    \({x^2} = 2x + m - 2 \Leftrightarrow {x^2} - 2x - m + 2 = 0\,\,\left( * \right)\)

    \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) \( \Rightarrow \) Phương trình (*) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\).

    \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 + m - 2 > 0 \Leftrightarrow m - 1 > 0 \Leftrightarrow m > 1\).

    Khi đó theo định lí Vi-ét ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = - m + 2}\end{array}} \right.\)

    Theo giả thiết:

     \(\begin{array}{l}\,\,\,\,\,\,\,\left| {{x_1} - {x_2}} \right| = 2\\ \Leftrightarrow {\left| {{x_1} - {x_2}} \right|^2} = 4\\ \Leftrightarrow {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = 4\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 4\\ \Leftrightarrow 4 - 4\left( { - m + 2} \right) = 4\\ \Leftrightarrow 4\left( { - m + 2} \right) = 0\\ \Leftrightarrow - m + 2 = 0\\ \Leftrightarrow m = 2\,\,\,\left( {tm} \right)\end{array}\)

    Vậy \(m = 2\).

    Bài IV

    Cho tam giác \(ABC\) vuông tại \(A\). Vẽ đường tròn tâm \(C\), bán kính \(CA\). Từ điểm \(B\) kẻ tiếp tuyến \(BM\) với đường tròn \(\left( {C;CA} \right)\) (\(M\) là tiếp điểm, \(M\) và \(A\)nằm khác phía nhau đối với đường thẳng \(BC\)).

    1) Chứng minh bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn.

    2) Lấy điểm \(N\) thuộc đoạn thẳng \(AB\)( \(N\) khác \(A\), \(N\) khác \(B\)). Lấy điểm \(P\) thuộc tia đối của \(MB\) sao cho \(MP = AN\). Chứng minh tam giác \(CPN\) là tam giác cân và đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\)

    Phương pháp:

    1) Chứng minh tứ giác \(ACMB\) nội tiếp một đường tròn suy ra bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn

    2) Chứng minh \(CN = CP\)(2 cạnh tương ứng bằng nhau).\( \Rightarrow \Delta CNP\) cân tại \(C\). (đpcm).

    Chứng minh \(CE\) là đường cao, đồng thời là đường trung tuyến của \(\Delta CNP\)\( \Rightarrow E\) là trung điểm của \(PN\)

    Cách giải:

    Đề thi vào 10 môn Toán Hà Nội năm 2021 1

    1) Ta có: tam giác \(ABC\) vuông tại \(A\) nên \(\angle BAC = {90^0}\)

    \(MB\) là tiếp tuyến của đường tròn \(\left( {C;CA} \right)\) nên \(\angle CMB = {90^0}\) (định nghĩa tiếp tuyến của đường tròn)

    Xét tứ giác \(ACMB\) ta có: \(\angle CAB + \angle CMB = {90^0} + {90^0} = {180^0}\)

    \( \Rightarrow ACMB\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng \({180^0}\)).

    Hay bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường trònbốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn. (đpcm).

    2) Xét tam giác \(CAN\) và tam giác \(CMP\) có:

    \(AN = MP\,\,\,\,\left( {gt} \right)\)

    \(\angle CAN = \angle CMP = {90^0}\)

    \(AC = CM\)(\(A,M\) cùng thuộc đường tròn \(\left( {C;\,\,CA} \right)\))

    \( \Rightarrow \Delta CAN = \Delta CMP\,\,\,\left( {c - g - c} \right)\)

    \( \Rightarrow CN = CP\)(2 cạnh tương ứng bằng nhau).

    \( \Rightarrow \Delta CNP\) cân tại \(C\). (đpcm).

    Gọi \(E\) là giao điểm của \(AM\) và \(PN\).

    Vì \(\Delta CAN = \Delta CMP\,\,\,\left( {cmt} \right)\) nên:

    \(\angle ACN = \angle MCP\)(2 góc tương ứng bằng nhau)

    \( \Rightarrow \angle ACM = \angle ACN + \angle NCM\) \( = \angle PCM + \angle MCN = \angle NCP\)

    \( \Rightarrow \)\(\Delta ACM\) và \(\Delta CNP\) là hai tam giác cân đỉnh \(C\) có \(\angle ACM = \angle PCN\)

    \( \Rightarrow \angle CNP = \angle CAM\) (các góc ở đáy của các tam giác cân có góc ở đỉnh bằng nhau)

    Hay \(\angle CAE = \angle CNE\)

    \( \Rightarrow CANE\) là tứ giác nội tiếp. (tứ giác có hai đỉnh kề 1 cạnh cùng nhìn cạnh đối diện dưới các góc bằng nhau).

    \( \Rightarrow \angle CEN = {90^0} \Rightarrow CE \bot PN\)

    Mà \(\Delta CNP\) cân tại \(C\) (cmt)

    \( \Rightarrow CE\) là đường cao, đồng thời là đường trung tuyến của \(\Delta CNP\)

    \( \Rightarrow E\) là trung điểm của \(PN\)

    Vậy đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\)(đpcm).

    Bài V

    Với các số thực \(a\) và \(b\) thỏa mãn \({a^2} + {b^2} = 2\), tìm giá trị nhỏ nhất của biểu thức \(P = 3\left( {a + b} \right) + ab\).

    Phương pháp:

    Kết hợp với giả thiết \({a^2} + {b^2} = 2\) biến đổi biểu thức \(P = 3\left( {a + b} \right) + ab\) trở thành \(P = \dfrac{1}{2}{\left( {a + b + 3} \right)^2} - \dfrac{{11}}{2}\)

    Sau đó áp dụng Áp dụng BĐT Bunhiacopxki để tìm giá trị nhỏ nhất của biểu thức ban đầu

    Cách giải:

    Ta có \({\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab = 2 + 2ab\) \( \Rightarrow ab = \dfrac{{{{\left( {a + b} \right)}^2} - 2}}{2} = \dfrac{1}{2}{\left( {a + b} \right)^2} - 1\).

    Khi đó ta có: \(P = 3\left( {a + b} \right) + ab = 3\left( {a + b} \right) + \dfrac{1}{2}{\left( {a + b} \right)^2} - 1\).

    \(\begin{array}{l}P = \dfrac{1}{2}\left[ {{{\left( {a + b} \right)}^2} + 6\left( {a + b} \right) + 9} \right] - \dfrac{{11}}{2}\\P = \dfrac{1}{2}{\left( {a + b + 3} \right)^2} - \dfrac{{11}}{2}\end{array}\)

    Áp dụng BĐT Bunhiacopxki ta có: \({\left( {a + b} \right)^2} \le 2\left( {{a^2} + {b^2}} \right) = 2.2 = 4\) \( \Rightarrow - 2 \le a + b \le 2\).

    \(\begin{array}{l} \Rightarrow 1 \le a + b + 3 \le 5\\ \Rightarrow - 5 \le \dfrac{1}{2}{\left( {a + b + 3} \right)^2} - \dfrac{{11}}{2} \le 7\end{array}\)

    \( \Leftrightarrow {P_{\min }} = - 5\).

    Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{a^2} + {b^2} = 2\\a = b\\a + b = - 2\end{array} \right. \Leftrightarrow a = b = - 1\).

    Vậy giá trị nhỏ nhất của biểu thức \(P\) bằng \( - 5\), đạt được khi \(a = b = - 1\).

    Lời giải chi tiết

      Bài I

      Cho hai biểu thức \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\) và \(B = \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\) với \(x \ge 0,\,\,x \ne 9\).

      1) Tính giá trị của biểu thức \(A\) khi \(x = 16\).

      2) Chứng minh \(A + B = \dfrac{3}{{\sqrt x + 3}}\).

      Phương pháp:

      1) Thay giá trị \(x = 16\,\,\left( {tmdk} \right)\) vào biểu thức \(A\) rồi tính giá trị của biểu thức.

      2) Quy đồng, biến đổi và rút gọn biểu thức \(A + B.\)

      Từ đó chứng minh được giá trị của \(A + B = \dfrac{3}{{\sqrt x + 3}}\)

      Cách giải:

      1) Điều kiện: \(x \ge 0,\,\,x \ne 9.\)

      Thay \(x = 16\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta có: 

      \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{{\sqrt {16} }}{{\sqrt {16} + 3}} = \dfrac{4}{{4 + 3}} = \dfrac{4}{7}\).

      Vậy khi \(x = 16\) thì \(A = \dfrac{4}{7}\).

      2) Điều kiện: \(x \ge 0,\,\,x \ne 9.\)

      \(\begin{array}{l}A + B = \dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt x \left( {\sqrt x - 3} \right) + 2\sqrt x \left( {\sqrt x + 3} \right) - 3x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3\sqrt x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{3}{{\sqrt x + 3}}\,\,\left( {dpcm} \right)\end{array}\)

      Vậy \(A + B = \dfrac{3}{{\sqrt x + 3}}\) (với \(x \ge 0,\,\,x \ne 9\)).

      Bài II

      1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

      Một tổ sản xuất phải làm xong 4800 bộ đồ bảo hộ y tế trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 100 bộ đồ bảo hộ y tế so với bộ đồ bảo hộ y tế phải làm trong một ngày theo kế hoạch. Vì thế 8 ngày trước khi hết thời hạn, tổ sản xuất đã làm xong 4800 bộ đồ bảo hộ y tế đó. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu bộ đồ bảo hộ y tế? (Giả định rằng số bộ đồ bảo hộ y tế mà tổ đó làm xong trong mỗi ngày là bằng nhau).

      2) Một thùng nước có dạng hình trụ với chiều cao 1,6m và bán kính đáy 0,5m. Người ta sơn toàn bộ phía ngoài mặt xung quanh mặt xung quanh của thùng nước này (trừ hai mặt đáy). Tính diện tích bề mặt được sơn của thùng nước (lấy \(\pi \approx 3,14\)).

      Phương pháp:

      1) Gọi số bộ đồ bảo hộ y tế tổ sản xuất phải làm trong một ngày theo kế hoạch là \(x\) (bộ), \(\left( {x \in {\mathbb{N}^*}} \right).\)

      Biểu diễn các đại lượng chưa biết theo các đại lượng đã biết và ẩn \(x\) vừa gọi.

      Dựa vào giả thiết bài cho để lập phương trình.

      Giải phương trình tìm ẩn \(x\) và đối chiếu với điều kiện xác định.

      Kết luận.

      2) Sử dụng công thức tính diện tích xung quanh của hình trụ có chiều cao \(h\) và bán kính \(r\): \({S_{xq}} = 2\pi rh.\)

      Cách giải:

      1) Gọi số bộ đồ bảo hộ y tế tổ sản xuất phải làm trong một ngày theo kế hoạch là \(x\) (bộ), \(\left( {x \in {\mathbb{N}^*}} \right).\)

      \( \Rightarrow \) Thời gian theo kế hoạch tổ sản xuất làm xong \(4800\) bộ đồ là: \(\dfrac{{4800}}{x}\) (ngày).

      Thực tế mỗi ngày, tổ đó làm được số bộ đồ bảo hộ y tế là:\(x + 100\) (bộ).

      \( \Rightarrow \) Thời gian thực tế tổ sản xuất làm xong \(4800\) bộ đồ là: \(\dfrac{{4800}}{{x + 100}}\) (ngày).

      Theo đề bài, tổ sản xuất đã làm xong \(4800\) bộ đồ trước \(8\) ngày so với kế hoạch nên ta có phương trình:

      \(\begin{array}{l}\,\,\,\,\,\,\,\,\dfrac{{4800}}{x} - \dfrac{{4800}}{{x + 100}} = 8\\ \Leftrightarrow 4800\left( {x + 100} \right) - 4800x = 8x\left( {x + 100} \right)\\ \Leftrightarrow 600\left( {x + 100} \right) - 600x = x\left( {x + 100} \right)\\ \Leftrightarrow 600x + 60000 - 600x = {x^2} + 100x\\ \Leftrightarrow {x^2} + 100x - 60000 = 0\end{array}\)

      Phương trình có: \(\Delta ' = {50^2} + 60000 = 62500 > 0\)

      \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} = - 50 + \sqrt {62500} = 200\,\,\left( {tm} \right)\) và \({x_2} = - 50 + \sqrt {62500} = - 300\,\,\,\left( {ktm} \right)\)

      Vậy theo kế hoạch, mỗi ngày tổ sản xuất phải làm \(200\) bộ đồ bảo hộ y tế.

      2) Thùng nước hình trụ có chiều cao \(h = 1,6m\) và bán kính đáy \(R = 0,5m\).

      Diện tích bề mặt được sơn của thùng nước là:

      \(2\pi Rh = 2.3,14.0,5.1,6 = 5,024\,\,\,\,\left( {{m^2}} \right)\)

      Vậy diện tích bề mặt được sơn của thùng nước là \(5,024\,{m^2}\).

      Bài III

      1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{3}{{x + 1}} - 2y = - 1}\\{\dfrac{5}{{x + 1}} + 3y = 11}\end{array}} \right.\)

      2) Trong mặt phẳng tọa độ \(Oxy\), cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2x + m - 2\). Tìm tất cả các giá trị của \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,{x_2}\) sao cho \(\left| {{x_1} - {x_2}} \right| = 2\).

      Phương pháp:

      1) Đặt \(\dfrac{1}{{x + 1}} = t\), hệ phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{3t - 2y = - 1}\\{5t + 3y = 11}\end{array}} \right.\), sau đó sử dụng phương pháp cộng đại số để tìm ra \(t\) và \(y\) sau đó tìm ra nghiệm \(\left( {x;y} \right)\) của phương trình ban đầu.

      2) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\), tìm điều kiện để phương trình có 2 nghiệm phân biệt, sử dụng ứng dụng của định lí Vi – ét và điều kiện giả thiết của đề bài để tìm được các giá trị của \(m\).

      Cách giải:

      1) ĐKXĐ: \(x \ne - 1\).

      Đặt \(\dfrac{1}{{x + 1}} = t\), hệ phương trình trở thành \(\left\{ {\begin{array}{*{20}{c}}{3t - 2y = - 1}\\{5t + 3y = 11}\end{array}} \right.\).

      Ta có \(\left\{ {\begin{array}{*{20}{c}}{3t - 2y = - 1}\\{5t + 3y = 11}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{9t - 6y = - 3}\\{10t + 6y = 22}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}19t = 19\\3t - 2y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\3 - 2y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\2y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\y = 2\end{array} \right.\).

      Với \(t = 1 \Rightarrow \dfrac{1}{{x + 1}} = 1 \Leftrightarrow x + 1 = 1 \Leftrightarrow x = 0\).

      Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {0;2} \right)\).

      2) Xét phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\):

      \({x^2} = 2x + m - 2 \Leftrightarrow {x^2} - 2x - m + 2 = 0\,\,\left( * \right)\)

      \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},\,\,{x_2}\) \( \Rightarrow \) Phương trình (*) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\).

      \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 + m - 2 > 0 \Leftrightarrow m - 1 > 0 \Leftrightarrow m > 1\).

      Khi đó theo định lí Vi-ét ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 2}\\{{x_1}.{x_2} = - m + 2}\end{array}} \right.\)

      Theo giả thiết:

       \(\begin{array}{l}\,\,\,\,\,\,\,\left| {{x_1} - {x_2}} \right| = 2\\ \Leftrightarrow {\left| {{x_1} - {x_2}} \right|^2} = 4\\ \Leftrightarrow {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = 4\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 4\\ \Leftrightarrow 4 - 4\left( { - m + 2} \right) = 4\\ \Leftrightarrow 4\left( { - m + 2} \right) = 0\\ \Leftrightarrow - m + 2 = 0\\ \Leftrightarrow m = 2\,\,\,\left( {tm} \right)\end{array}\)

      Vậy \(m = 2\).

      Bài IV

      Cho tam giác \(ABC\) vuông tại \(A\). Vẽ đường tròn tâm \(C\), bán kính \(CA\). Từ điểm \(B\) kẻ tiếp tuyến \(BM\) với đường tròn \(\left( {C;CA} \right)\) (\(M\) là tiếp điểm, \(M\) và \(A\)nằm khác phía nhau đối với đường thẳng \(BC\)).

      1) Chứng minh bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn.

      2) Lấy điểm \(N\) thuộc đoạn thẳng \(AB\)( \(N\) khác \(A\), \(N\) khác \(B\)). Lấy điểm \(P\) thuộc tia đối của \(MB\) sao cho \(MP = AN\). Chứng minh tam giác \(CPN\) là tam giác cân và đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\)

      Phương pháp:

      1) Chứng minh tứ giác \(ACMB\) nội tiếp một đường tròn suy ra bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn

      2) Chứng minh \(CN = CP\)(2 cạnh tương ứng bằng nhau).\( \Rightarrow \Delta CNP\) cân tại \(C\). (đpcm).

      Chứng minh \(CE\) là đường cao, đồng thời là đường trung tuyến của \(\Delta CNP\)\( \Rightarrow E\) là trung điểm của \(PN\)

      Cách giải:

      Đề thi vào 10 môn Toán Hà Nội năm 2021 1 1

      1) Ta có: tam giác \(ABC\) vuông tại \(A\) nên \(\angle BAC = {90^0}\)

      \(MB\) là tiếp tuyến của đường tròn \(\left( {C;CA} \right)\) nên \(\angle CMB = {90^0}\) (định nghĩa tiếp tuyến của đường tròn)

      Xét tứ giác \(ACMB\) ta có: \(\angle CAB + \angle CMB = {90^0} + {90^0} = {180^0}\)

      \( \Rightarrow ACMB\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng \({180^0}\)).

      Hay bốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường trònbốn điểm \(A,C,M\) và \(B\) cùng thuộc một đường tròn. (đpcm).

      2) Xét tam giác \(CAN\) và tam giác \(CMP\) có:

      \(AN = MP\,\,\,\,\left( {gt} \right)\)

      \(\angle CAN = \angle CMP = {90^0}\)

      \(AC = CM\)(\(A,M\) cùng thuộc đường tròn \(\left( {C;\,\,CA} \right)\))

      \( \Rightarrow \Delta CAN = \Delta CMP\,\,\,\left( {c - g - c} \right)\)

      \( \Rightarrow CN = CP\)(2 cạnh tương ứng bằng nhau).

      \( \Rightarrow \Delta CNP\) cân tại \(C\). (đpcm).

      Gọi \(E\) là giao điểm của \(AM\) và \(PN\).

      Vì \(\Delta CAN = \Delta CMP\,\,\,\left( {cmt} \right)\) nên:

      \(\angle ACN = \angle MCP\)(2 góc tương ứng bằng nhau)

      \( \Rightarrow \angle ACM = \angle ACN + \angle NCM\) \( = \angle PCM + \angle MCN = \angle NCP\)

      \( \Rightarrow \)\(\Delta ACM\) và \(\Delta CNP\) là hai tam giác cân đỉnh \(C\) có \(\angle ACM = \angle PCN\)

      \( \Rightarrow \angle CNP = \angle CAM\) (các góc ở đáy của các tam giác cân có góc ở đỉnh bằng nhau)

      Hay \(\angle CAE = \angle CNE\)

      \( \Rightarrow CANE\) là tứ giác nội tiếp. (tứ giác có hai đỉnh kề 1 cạnh cùng nhìn cạnh đối diện dưới các góc bằng nhau).

      \( \Rightarrow \angle CEN = {90^0} \Rightarrow CE \bot PN\)

      Mà \(\Delta CNP\) cân tại \(C\) (cmt)

      \( \Rightarrow CE\) là đường cao, đồng thời là đường trung tuyến của \(\Delta CNP\)

      \( \Rightarrow E\) là trung điểm của \(PN\)

      Vậy đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\)(đpcm).

      Bài V

      Với các số thực \(a\) và \(b\) thỏa mãn \({a^2} + {b^2} = 2\), tìm giá trị nhỏ nhất của biểu thức \(P = 3\left( {a + b} \right) + ab\).

      Phương pháp:

      Kết hợp với giả thiết \({a^2} + {b^2} = 2\) biến đổi biểu thức \(P = 3\left( {a + b} \right) + ab\) trở thành \(P = \dfrac{1}{2}{\left( {a + b + 3} \right)^2} - \dfrac{{11}}{2}\)

      Sau đó áp dụng Áp dụng BĐT Bunhiacopxki để tìm giá trị nhỏ nhất của biểu thức ban đầu

      Cách giải:

      Ta có \({\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab = 2 + 2ab\) \( \Rightarrow ab = \dfrac{{{{\left( {a + b} \right)}^2} - 2}}{2} = \dfrac{1}{2}{\left( {a + b} \right)^2} - 1\).

      Khi đó ta có: \(P = 3\left( {a + b} \right) + ab = 3\left( {a + b} \right) + \dfrac{1}{2}{\left( {a + b} \right)^2} - 1\).

      \(\begin{array}{l}P = \dfrac{1}{2}\left[ {{{\left( {a + b} \right)}^2} + 6\left( {a + b} \right) + 9} \right] - \dfrac{{11}}{2}\\P = \dfrac{1}{2}{\left( {a + b + 3} \right)^2} - \dfrac{{11}}{2}\end{array}\)

      Áp dụng BĐT Bunhiacopxki ta có: \({\left( {a + b} \right)^2} \le 2\left( {{a^2} + {b^2}} \right) = 2.2 = 4\) \( \Rightarrow - 2 \le a + b \le 2\).

      \(\begin{array}{l} \Rightarrow 1 \le a + b + 3 \le 5\\ \Rightarrow - 5 \le \dfrac{1}{2}{\left( {a + b + 3} \right)^2} - \dfrac{{11}}{2} \le 7\end{array}\)

      \( \Leftrightarrow {P_{\min }} = - 5\).

      Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{a^2} + {b^2} = 2\\a = b\\a + b = - 2\end{array} \right. \Leftrightarrow a = b = - 1\).

      Vậy giá trị nhỏ nhất của biểu thức \(P\) bằng \( - 5\), đạt được khi \(a = b = - 1\).

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Hà Nội năm 2021 đặc sắc thuộc chuyên mục giải toán 9 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Tổng quan về Đề thi vào 10 môn Toán Hà Nội năm 2021

      Kỳ thi tuyển sinh vào lớp 10 THPT tại Hà Nội luôn là một kỳ thi quan trọng, đánh dấu bước chuyển mình của học sinh từ bậc THCS lên THPT. Môn Toán đóng vai trò then chốt trong việc xét tuyển, do đó, việc nắm vững kiến thức và luyện tập kỹ càng là vô cùng cần thiết. Đề thi vào 10 môn Toán Hà Nội năm 2021 tiếp tục duy trì cấu trúc đề thi truyền thống, tập trung vào các kiến thức trọng tâm của chương trình THCS.

      Cấu trúc đề thi vào 10 môn Toán Hà Nội năm 2021

      Đề thi thường bao gồm các dạng bài tập sau:

      • Đại số: Các bài toán về phương trình, hệ phương trình, bất phương trình, hàm số, và các ứng dụng thực tế.
      • Hình học: Các bài toán về hình học phẳng, hình học không gian, và các tính chất liên quan đến đường thẳng, đường tròn, tam giác, và các hình đa giác.
      • Số học: Các bài toán về số nguyên tố, ước số, bội số, và các phép toán cơ bản.
      • Tổ hợp - Xác suất: Các bài toán về đếm, hoán vị, tổ hợp, và xác suất.

      Phân tích các đề thi vào 10 môn Toán Hà Nội năm 2021

      Năm 2021, đề thi vào 10 môn Toán Hà Nội tiếp tục đánh giá khả năng vận dụng kiến thức vào giải quyết các bài toán thực tế. Các đề thi có xu hướng tăng cường các bài toán liên quan đến tư duy logic, khả năng phân tích và tổng hợp thông tin. Một số chủ đề thường xuyên xuất hiện trong đề thi bao gồm:

      • Phương trình bậc hai và ứng dụng
      • Hệ phương trình tuyến tính
      • Bất phương trình và hệ bất phương trình
      • Hàm số bậc nhất và bậc hai
      • Tam giác đồng dạng và các tính chất liên quan
      • Đường tròn và các yếu tố liên quan
      • Tổ hợp và xác suất cơ bản

      Làm thế nào để ôn thi vào 10 môn Toán Hà Nội hiệu quả?

      Để đạt kết quả tốt trong kỳ thi vào 10 môn Toán Hà Nội, học sinh cần có một kế hoạch ôn tập khoa học và hiệu quả. Dưới đây là một số gợi ý:

      1. Nắm vững kiến thức cơ bản: Đảm bảo hiểu rõ các khái niệm, định lý, và công thức trong chương trình THCS.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau, từ dễ đến khó, để rèn luyện kỹ năng giải toán.
      3. Ôn tập theo chủ đề: Chia nhỏ chương trình thành các chủ đề nhỏ và ôn tập từng chủ đề một cách kỹ lưỡng.
      4. Làm đề thi thử: Làm các đề thi thử để làm quen với cấu trúc đề thi và rèn luyện kỹ năng làm bài.
      5. Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, hãy tìm kiếm sự giúp đỡ từ giáo viên, bạn bè, hoặc các nguồn tài liệu học tập trực tuyến.

      Tài liệu ôn thi vào 10 môn Toán Hà Nội năm 2021

      Có rất nhiều tài liệu ôn thi vào 10 môn Toán Hà Nội năm 2021 mà học sinh có thể tham khảo. Một số tài liệu hữu ích bao gồm:

      • Sách giáo khoa Toán THCS
      • Sách bài tập Toán THCS
      • Các đề thi vào 10 môn Toán Hà Nội các năm trước
      • Các tài liệu ôn thi vào 10 môn Toán do các trung tâm luyện thi cung cấp
      • Các trang web học toán trực tuyến như giaitoan.edu.vn

      Lời khuyên cho thí sinh

      Trước khi bước vào phòng thi, hãy đảm bảo bạn đã chuẩn bị đầy đủ các dụng cụ cần thiết, như bút, thước, compa, và máy tính bỏ túi. Hãy đọc kỹ đề thi trước khi bắt đầu làm bài và phân bổ thời gian hợp lý cho từng câu hỏi. Đừng bỏ qua bất kỳ câu hỏi nào và hãy kiểm tra lại bài làm của mình trước khi nộp.

      Giaitoan.edu.vn đồng hành cùng bạn

      Giaitoan.edu.vn là một trang web học toán trực tuyến uy tín, cung cấp đầy đủ các tài liệu ôn tập, đề thi thử, và giải đáp thắc mắc cho học sinh. Chúng tôi hy vọng sẽ là người bạn đồng hành đáng tin cậy của bạn trên con đường chinh phục kỳ thi vào 10 môn Toán Hà Nội năm 2021.

      Tài liệu, đề thi và đáp án Toán 9