Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Tiền Giang năm 2019 chính thức. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.
Bộ đề thi này bao gồm các đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 chuyên và không chuyên của tỉnh Tiền Giang năm 2019, kèm theo đáp án chi tiết và lời giải bài tập.
Câu 1 (3 điểm): 1) Tính giá trị của biểu thức:
Câu 1 (3 điểm):
1) Tính giá trị của biểu thức: \(A = \sqrt {4 - 2\sqrt 3 } - \dfrac{1}{2}\sqrt {12} .\)
2) Giải phương trình và hệ phương trình sau:
\(a)\;{x^4} + {x^2} - 20 = 0\) \(b)\;\left\{ \begin{array}{l}3x - y = 11\\2x + y = 9\end{array} \right..\)
3) Cho phương trình \({x^2} - 2x - 5 = 0\) có hai nghiệm \({x_1},\;{x_2}.\) Không giải phương trình, hãy tính giá trị của các biểu thức: \(B = x_1^2 + x_2^2,\;\;C = x_1^5 + x_2^5.\)
Câu 2 (2 điểm): Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \dfrac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Câu 3 (1,5 điểm): Hai bến sông A và B cách nhau 60km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h.
Câu 4 (2,5 điểm): Cho tam giác ABC có ba góc nhọn (AB < AC), các đường cao AF, BD và CE cắt nhau tại H.
1) Chứng minh tứ giác BEDC nội tiếp đường tròn.
2) Chứng minh AE.AB = AD.AC.
3) Chứng minh FH là phân giác của \(\widehat {EFD}.\)
4) Gọi O là trung điểm của đoạn thẳng BC. Chứng minh \(\widehat {DOC} = \widehat {FED}.\)
Câu 5 (1 điểm): Một hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.
Câu 1:
Phương pháp:
1) Sử dụng công thức: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\;\;khi\;\;A \ge 0\\ - A\;\;khi\;\;A < 0\end{array} \right..\)
2) a) Đặt \({x^2} = t\;\;\left( {t \ge 0} \right),\) đưa phương trình đã cho về phương trình bậc hai ẩn t. Giải phương trình ẩn t sau đó tìm ẩn x.
b) Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.
3) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) để tính giá trị các biểu thức đề bài yêu cầu.
Cách giải:
\(\begin{array}{l}1)\;\;A = \sqrt {4 - 2\sqrt 3 } - \dfrac{1}{2}\sqrt {12} \\\;\;\;\;\;\;\; = \sqrt {{{\left( {\sqrt 3 } \right)}^2} - 2.\sqrt 3 .1 + 1} - \dfrac{1}{2}.\sqrt {{2^2}.3} \\\;\;\;\;\;\;\; = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} - \dfrac{{2\sqrt 3 }}{2}\\\;\;\;\;\;\;\; = \left| {\sqrt 3 - 1} \right| - \sqrt 3 \\\;\;\;\;\;\;\; = \sqrt 3 - 1 - \sqrt 3 = - 1.\;\;\left( {do\;\;\sqrt 3 - 1 > 0} \right).\end{array}\)
2) Giải phương trình và hệ phương trình sau:
\(a)\;{x^4} + {x^2} - 20 = 0\)
Đặt \({x^2} = t\;\;\left( {t \ge 0} \right).\) Khi đó ta có phương trình:
\(\begin{array}{l} \Leftrightarrow {t^2} + t - 20 = 0\\ \Leftrightarrow {t^2} + 5t - 4t - 20 = 0\\ \Leftrightarrow \left( {t - 4} \right)\left( {t + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 4 = 0\\t + 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 4\;\;\left( {tm} \right)\\t = - 5\;\;\left( {ktm} \right)\end{array} \right.\\ \Rightarrow {x^2} = 4 \Leftrightarrow x = \pm 2.\end{array}\)
Vậy phương trình có tập nghiệm \(S = \left\{ { - 2;\;2} \right\}.\)
\(b)\;\left\{ \begin{array}{l}3x - y = 11\\2x + y = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 20\\y = 9 - 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 9 - 2.4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right..\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\;y} \right) = \left( {4;1} \right).\)
3) Cho phương trình \({x^2} - 2x - 5 = 0\) có hai nghiệm \({x_1},\;{x_2}.\) Không giải phương trình, hãy tính giá trị của các biểu thức: \(B = x_1^2 + x_2^2,\;\;C = x_1^5 + x_2^5.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = - 5\end{array} \right..\)
Khi đó: \(B = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {2^2} - 2.\left( { - 5} \right) = 14.\)
\(\begin{array}{l}C = x_1^5 + x_2^5 = \left( {{x_1} + {x_2}} \right)\left( {x_1^4 - x_1^3{x_2} + x_1^2x_2^2 - {x_1}x_2^3 + x_2^4} \right)\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {x_1^4 + x_2^4 - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2} \right]\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {x_1^2 + x_2^2} \right)}^2} - 2x_1^2x_2^2 - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2} \right]\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {x_1^2 + x_2^2} \right)}^2} - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) - x_1^2x_2^2} \right].\end{array}\)
Áp dụng hệ thức Vi-ét và kết quả của biểu thức B ta được:
\(C = 2\left[ {{{14}^2} - \left( { - 5} \right).14 - {{\left( { - 5} \right)}^2}} \right] = 2.\left( {196 + 70 - 25} \right) = 482.\)
Câu 2:
Phương pháp:
1) Lập bảng giá trị mà các đồ thị hàm số đi qua sau đó vẽ hai đồ thị trên cùng một hệ trục tọa độ.
2) Để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\) thì phương trình hoành độ giao điểm của hai đồ thị có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0.\)
3) +) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right..\)
+) Sử dụng công thức tính đoạn thẳng: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} .\)
Cách giải:
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \dfrac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
+) Với \(m = 2\) ta có: \(\left( d \right):\;\;y = x + 2.\)
Ta có bảng giá trị:
\(x\) | \(0\) | \( - 2\) |
\(y = x + 2\) | \(2\) | \(0\) |
Đường thẳng \(\left( d \right)\) đi qua hai điểm \(\left( {0;\;2} \right)\) và \(\left( { - 2;\;0} \right).\)
+) Vẽ đồ thị hàm số \(\left( P \right):\)
\(x\) | \( - 4\) | \( - 2\) | \(0\) | \(2\) | \(4\) |
\(y = \dfrac{1}{2}{x^2}\) | \(8\) | \(2\) | \(0\) | \(2\) | \(8\) |
Đồ thị \(\left( P \right)\) là đường cong đi qua các điểm \(\left( { - 4;\;8} \right),\;\;\left( { - 2;\;2} \right),\;\left( {0;\;0} \right),\;\left( {2;\;2} \right),\;\;\left( {4;\;8} \right).\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
Phương trình hoành độ giao điểm của hai đồ thị là: \(x + m = \dfrac{1}{2}{x^2} \Leftrightarrow {x^2} - 2x - 2m = 0.\;\;\left( * \right)\)
Để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\) thì phương trình \(\left( * \right)\) có nghiệm hai phân biệt \( \Leftrightarrow \Delta ' > 0\)
\( \Leftrightarrow 1 + 2m > 0 \Leftrightarrow m > - \dfrac{1}{2}.\)
Vậy \(m > - \dfrac{1}{2}.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Với \(m > - \dfrac{1}{2}\) thì \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};\;{y_1}} \right),\;\;B\left( {{x_2};\;{y_2}} \right).\)
Khi đó \({x_1},\;{x_2}\) là hai nghiệm của phương trình \(\left( * \right).\) Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = - 2m\end{array} \right..\)
Ta có: \(A,\;\;B \in \left( d \right) \Rightarrow A\left( {{x_1};\;{x_1} + m} \right),\;\;B\left( {{x_2};\;x + m} \right).\)
Theo đề bài ta có: \(AB = 6\sqrt 2 \)
\(\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{x_2} + m - {x_1} - m} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow \sqrt {2{{\left( {{x_2} - {x_1}} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow {\left( {{x_2} - {x_1}} \right)^2} = 36\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 36\\ \Leftrightarrow {2^2} - 4.\left( { - 2m} \right) = 36\\ \Leftrightarrow 8m = 32\\ \Leftrightarrow m = 4\;\;\left( {tm} \right).\end{array}\)
Vậy \(m = 4.\)
Câu 3:
Phương pháp:
Giải bài toàn bằng cách lập phương trình:
+) Gọi ẩn và đặt điều kiện cho ẩn.
+) Biểu diễn các đại lượng chữa biết theo ẩn và đại lượng đã biết.
+) Dựa vào giả thiết của bài toán để lập phương trình.
+) Giải phương trình tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.
Cách giải:
Hai bến sông A và B cách nhau 60km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h.
Gọi vận tốc ngược dòng của ca nô là \(x\;\left( {km/h} \right)\;\;\left( {x > 0} \right).\)
Khi đó vận tốc ca nô khi xuôi dòng là: \(x + 6\;\;\left( {km/h} \right).\)
Thời gian ca nô đi hết khúc sông khi xuôi dòng là: \(\dfrac{{60}}{{x + 6}}\;\left( h \right).\)
Thời gian ca nô đi hết khúc sông khi ngược dòng là: \(\dfrac{{60}}{x}\;\left( h \right).\)
Theo đề bài ta có phương trình: \(\dfrac{{60}}{x} - \dfrac{{60}}{{x + 6}} = \dfrac{{20}}{{60}} = \dfrac{1}{3}\)
\(\begin{array}{l} \Leftrightarrow 3.60\left( {x + 6} \right) - 3.60x = x\left( {x + 6} \right)\\ \Leftrightarrow 180x + 1080 - 180x = {x^2} + 6x\\ \Leftrightarrow {x^2} + 6x - 1080 = 0\\ \Leftrightarrow \left( {x - 30} \right)\left( {x + 36} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 30 = 0\\x + 36 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 30\;\;\left( {tm} \right)\\x = - 36\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
Vậy vận tốc của ca nô khi ngược dòng là \(30\;km/h.\)
Câu 4:
Phương pháp:
1) Chứng minh tứ giác BEDC có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối diện.
2) Chứng minh tam giác ABC đồng dạng với tam giác ADE.
3) Chứng minh các tứ giác BEHF và CDHF là các tứ giác nội tiếp.
4) Chứng minh \(\widehat {DOC} = \widehat {DEF} = 2\widehat {{B_1}}\).
Cách giải:
Cho tam giác ABC có ba góc nhọn (AB < AC), các đường cao AF, BD và CE cắt nhau tại H.
1) Chứng minh tứ giác BEDC nội tiếp đường tròn.
Xét tứ giác \(BEDC\) ta có: \(\widehat {BEC} = \widehat {BDC} = {90^0}\;\left( {gt} \right)\)
Mà hai góc này là hai góc kề 1 cạnh và cùng nhìn đoạn \(BC.\)
\( \Rightarrow BEDC\) là tứ giác nội tiếp (dấu hiệu nhận biết).
2) Chứng minh AE.AB = AD.AC.
Vì \(BEDC\) là tứ giác nội tiếp (cmt) nên \(\widehat {ADE} = \widehat {ABC}\) (góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối diện).
Xét \(\Delta ADE\) và \(\Delta ABC\) ta có:
\(\begin{array}{l}\widehat A\;chung\\\widehat {AED} = \widehat {ABC}\;\;\left( {cmt} \right)\\ \Rightarrow \Delta ADE \sim \Delta ABC\;\left( {g - g} \right).\\ \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} \Leftrightarrow AD.AC = AE.AB\;\;\left( {dpcm} \right).\end{array}\)
3) Chứng minh FH là phân giác của \(\widehat {EFD}.\)
Ta có: \(BEHF\) là tứ giác nội tiếp \(\left( {do\;\;\widehat {BEH} + \widehat {HFB} = {{90}^0} + {{90}^0} = {{180}^0}} \right).\)
\( \Rightarrow \widehat {EBH} = \widehat {EFH}\) (hai góc nội tiếp cùng chắn cung \(EH\)) (1)
Có \(DCFH\) là tứ giác nội tiếp \(\left( {do\;\;\widehat {HFC} + \widehat {HDC} = {{90}^0} + {{90}^0} = {{180}^0}} \right).\)
\( \Rightarrow \widehat {DCH} = \widehat {DFH}\) (hai góc nội tiếp cùng chắn cung \(DH\)) (2)
Mà \(BEDC\) là tứ giác nội tiếp (cmt)
\( \Rightarrow \widehat {DCH} = \widehat {EBH}\) (hai góc nội tiếp cùng chắn cung \(DE\)) (3)
Từ (1), (2) và (3) ta có: \(\widehat {EFH} = \widehat {HFD}.\)
Hay \(FH\) là phân giác của \(\widehat {EFD}.\) (đpcm)
4) Gọi O là trung điểm của đoạn thẳng BC. Chứng minh \(\widehat {DOC} = \widehat {FED}.\)
Xét tam giác \(BDC\) vuông tại \(D\) có đường trung tuyến \(DO \Rightarrow DO = OB = OC\) (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông).
\( \Rightarrow \Delta BOD\) cân tại \(O \Rightarrow \widehat {BDO} = \widehat {DBO}\) (tính chất tam giác cân)
\( \Rightarrow \widehat {DOC} = \widehat {DBO} + \widehat {BDO} = 2\widehat {DBO} = 2\widehat {{B_1}}.\)
Vì \(EBCD\) là tứ giác nội tiếp \( \Rightarrow \widehat {{B_1}} = \widehat {{E_1}}\) (hai góc nội tiếp cùng chắn cung \(CD\))
Vì \(BEHF\) là tứ giác nội tiếp \( \Rightarrow \widehat {{B_1}} = \widehat {{E_2}}\) (hai góc nội tiếp cùng chắn cung \(HF\))
\( \Rightarrow \widehat {DOC} = 2\widehat {{B_1}} = \widehat {{E_1}} + \widehat {{E_2}} = \widehat {FED}.\;\;\;\left( {dpcm} \right)\)
Câu 5:
Phương pháp:
Sử dụng các công thức \({S_{xq}} = 2\pi Rh\) và \({V_{tru}} = \pi {R^2}h\) trong đó R, h lần lượt là bán kính đáy và chiều cao của hình trụ.
Cách giải :
Một hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.
Gọi R, h lần lượt là bán kính đáy và chiều cao của hình trụ.
Vì bán kính đáy bằng \(\dfrac{1}{2}\) đường cao nên \(R = \dfrac{1}{2}h \Rightarrow h = 2R\)
Khi đó ta có \({S_{xq}} = 2\pi Rh = 2\pi .R.2R = 256\pi \Leftrightarrow {R^2} = 64 \Leftrightarrow R = 8\,\,\left( {cm} \right)\)
\( \Rightarrow h = 2.8 = 16\,\,\left( {cm} \right)\)
Vậy thể tích của khối trụ là \(V = \pi {R^2}h = \pi {.8^2}.16 = 1024\pi \,\,\left( {c{m^3}} \right)\).
Câu 1 (3 điểm):
1) Tính giá trị của biểu thức: \(A = \sqrt {4 - 2\sqrt 3 } - \dfrac{1}{2}\sqrt {12} .\)
2) Giải phương trình và hệ phương trình sau:
\(a)\;{x^4} + {x^2} - 20 = 0\) \(b)\;\left\{ \begin{array}{l}3x - y = 11\\2x + y = 9\end{array} \right..\)
3) Cho phương trình \({x^2} - 2x - 5 = 0\) có hai nghiệm \({x_1},\;{x_2}.\) Không giải phương trình, hãy tính giá trị của các biểu thức: \(B = x_1^2 + x_2^2,\;\;C = x_1^5 + x_2^5.\)
Câu 2 (2 điểm): Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \dfrac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Câu 3 (1,5 điểm): Hai bến sông A và B cách nhau 60km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h.
Câu 4 (2,5 điểm): Cho tam giác ABC có ba góc nhọn (AB < AC), các đường cao AF, BD và CE cắt nhau tại H.
1) Chứng minh tứ giác BEDC nội tiếp đường tròn.
2) Chứng minh AE.AB = AD.AC.
3) Chứng minh FH là phân giác của \(\widehat {EFD}.\)
4) Gọi O là trung điểm của đoạn thẳng BC. Chứng minh \(\widehat {DOC} = \widehat {FED}.\)
Câu 5 (1 điểm): Một hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.
Câu 1:
Phương pháp:
1) Sử dụng công thức: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\;\;khi\;\;A \ge 0\\ - A\;\;khi\;\;A < 0\end{array} \right..\)
2) a) Đặt \({x^2} = t\;\;\left( {t \ge 0} \right),\) đưa phương trình đã cho về phương trình bậc hai ẩn t. Giải phương trình ẩn t sau đó tìm ẩn x.
b) Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.
3) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\) để tính giá trị các biểu thức đề bài yêu cầu.
Cách giải:
\(\begin{array}{l}1)\;\;A = \sqrt {4 - 2\sqrt 3 } - \dfrac{1}{2}\sqrt {12} \\\;\;\;\;\;\;\; = \sqrt {{{\left( {\sqrt 3 } \right)}^2} - 2.\sqrt 3 .1 + 1} - \dfrac{1}{2}.\sqrt {{2^2}.3} \\\;\;\;\;\;\;\; = \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} - \dfrac{{2\sqrt 3 }}{2}\\\;\;\;\;\;\;\; = \left| {\sqrt 3 - 1} \right| - \sqrt 3 \\\;\;\;\;\;\;\; = \sqrt 3 - 1 - \sqrt 3 = - 1.\;\;\left( {do\;\;\sqrt 3 - 1 > 0} \right).\end{array}\)
2) Giải phương trình và hệ phương trình sau:
\(a)\;{x^4} + {x^2} - 20 = 0\)
Đặt \({x^2} = t\;\;\left( {t \ge 0} \right).\) Khi đó ta có phương trình:
\(\begin{array}{l} \Leftrightarrow {t^2} + t - 20 = 0\\ \Leftrightarrow {t^2} + 5t - 4t - 20 = 0\\ \Leftrightarrow \left( {t - 4} \right)\left( {t + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 4 = 0\\t + 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 4\;\;\left( {tm} \right)\\t = - 5\;\;\left( {ktm} \right)\end{array} \right.\\ \Rightarrow {x^2} = 4 \Leftrightarrow x = \pm 2.\end{array}\)
Vậy phương trình có tập nghiệm \(S = \left\{ { - 2;\;2} \right\}.\)
\(b)\;\left\{ \begin{array}{l}3x - y = 11\\2x + y = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 20\\y = 9 - 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 9 - 2.4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right..\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\;y} \right) = \left( {4;1} \right).\)
3) Cho phương trình \({x^2} - 2x - 5 = 0\) có hai nghiệm \({x_1},\;{x_2}.\) Không giải phương trình, hãy tính giá trị của các biểu thức: \(B = x_1^2 + x_2^2,\;\;C = x_1^5 + x_2^5.\)
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = - 5\end{array} \right..\)
Khi đó: \(B = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {2^2} - 2.\left( { - 5} \right) = 14.\)
\(\begin{array}{l}C = x_1^5 + x_2^5 = \left( {{x_1} + {x_2}} \right)\left( {x_1^4 - x_1^3{x_2} + x_1^2x_2^2 - {x_1}x_2^3 + x_2^4} \right)\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {x_1^4 + x_2^4 - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2} \right]\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {x_1^2 + x_2^2} \right)}^2} - 2x_1^2x_2^2 - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) + x_1^2x_2^2} \right]\\\;\;\; = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {x_1^2 + x_2^2} \right)}^2} - {x_1}{x_2}\left( {x_1^2 + x_2^2} \right) - x_1^2x_2^2} \right].\end{array}\)
Áp dụng hệ thức Vi-ét và kết quả của biểu thức B ta được:
\(C = 2\left[ {{{14}^2} - \left( { - 5} \right).14 - {{\left( { - 5} \right)}^2}} \right] = 2.\left( {196 + 70 - 25} \right) = 482.\)
Câu 2:
Phương pháp:
1) Lập bảng giá trị mà các đồ thị hàm số đi qua sau đó vẽ hai đồ thị trên cùng một hệ trục tọa độ.
2) Để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\) thì phương trình hoành độ giao điểm của hai đồ thị có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0.\)
3) +) Áp dụng hệ thức Vi-ét \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right..\)
+) Sử dụng công thức tính đoạn thẳng: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} .\)
Cách giải:
Trong mặt phẳng tọa độ \(Oxy\) cho parabol \(\left( P \right):\;\;y = \dfrac{1}{2}{x^2}\) và đường thẳng \(\left( d \right):\;\;y = x + m.\)
1) Vẽ \(\left( P \right)\) và \(\left( d \right)\) trên cùng một hệ trục tọa độ khi \(m = 2.\)
+) Với \(m = 2\) ta có: \(\left( d \right):\;\;y = x + 2.\)
Ta có bảng giá trị:
\(x\) | \(0\) | \( - 2\) |
\(y = x + 2\) | \(2\) | \(0\) |
Đường thẳng \(\left( d \right)\) đi qua hai điểm \(\left( {0;\;2} \right)\) và \(\left( { - 2;\;0} \right).\)
+) Vẽ đồ thị hàm số \(\left( P \right):\)
\(x\) | \( - 4\) | \( - 2\) | \(0\) | \(2\) | \(4\) |
\(y = \dfrac{1}{2}{x^2}\) | \(8\) | \(2\) | \(0\) | \(2\) | \(8\) |
Đồ thị \(\left( P \right)\) là đường cong đi qua các điểm \(\left( { - 4;\;8} \right),\;\;\left( { - 2;\;2} \right),\;\left( {0;\;0} \right),\;\left( {2;\;2} \right),\;\;\left( {4;\;8} \right).\)
2) Định các giá trị của \(m\) để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B.\)
Phương trình hoành độ giao điểm của hai đồ thị là: \(x + m = \dfrac{1}{2}{x^2} \Leftrightarrow {x^2} - 2x - 2m = 0.\;\;\left( * \right)\)
Để \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\) và \(B\) thì phương trình \(\left( * \right)\) có nghiệm hai phân biệt \( \Leftrightarrow \Delta ' > 0\)
\( \Leftrightarrow 1 + 2m > 0 \Leftrightarrow m > - \dfrac{1}{2}.\)
Vậy \(m > - \dfrac{1}{2}.\)
3) Tìm giác trị của \(m\) để độ dài đoạn thẳng \(AB = 6\sqrt 2 .\)
Với \(m > - \dfrac{1}{2}\) thì \(\left( d \right)\)cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};\;{y_1}} \right),\;\;B\left( {{x_2};\;{y_2}} \right).\)
Khi đó \({x_1},\;{x_2}\) là hai nghiệm của phương trình \(\left( * \right).\) Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = - 2m\end{array} \right..\)
Ta có: \(A,\;\;B \in \left( d \right) \Rightarrow A\left( {{x_1};\;{x_1} + m} \right),\;\;B\left( {{x_2};\;x + m} \right).\)
Theo đề bài ta có: \(AB = 6\sqrt 2 \)
\(\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{x_2} + m - {x_1} - m} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow \sqrt {2{{\left( {{x_2} - {x_1}} \right)}^2}} = 6\sqrt 2 \\ \Leftrightarrow {\left( {{x_2} - {x_1}} \right)^2} = 36\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 36\\ \Leftrightarrow {2^2} - 4.\left( { - 2m} \right) = 36\\ \Leftrightarrow 8m = 32\\ \Leftrightarrow m = 4\;\;\left( {tm} \right).\end{array}\)
Vậy \(m = 4.\)
Câu 3:
Phương pháp:
Giải bài toàn bằng cách lập phương trình:
+) Gọi ẩn và đặt điều kiện cho ẩn.
+) Biểu diễn các đại lượng chữa biết theo ẩn và đại lượng đã biết.
+) Dựa vào giả thiết của bài toán để lập phương trình.
+) Giải phương trình tìm ẩn và đối chiếu với điều kiện của ẩn rồi kết luận.
Cách giải:
Hai bến sông A và B cách nhau 60km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng về A. Thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h.
Gọi vận tốc ngược dòng của ca nô là \(x\;\left( {km/h} \right)\;\;\left( {x > 0} \right).\)
Khi đó vận tốc ca nô khi xuôi dòng là: \(x + 6\;\;\left( {km/h} \right).\)
Thời gian ca nô đi hết khúc sông khi xuôi dòng là: \(\dfrac{{60}}{{x + 6}}\;\left( h \right).\)
Thời gian ca nô đi hết khúc sông khi ngược dòng là: \(\dfrac{{60}}{x}\;\left( h \right).\)
Theo đề bài ta có phương trình: \(\dfrac{{60}}{x} - \dfrac{{60}}{{x + 6}} = \dfrac{{20}}{{60}} = \dfrac{1}{3}\)
\(\begin{array}{l} \Leftrightarrow 3.60\left( {x + 6} \right) - 3.60x = x\left( {x + 6} \right)\\ \Leftrightarrow 180x + 1080 - 180x = {x^2} + 6x\\ \Leftrightarrow {x^2} + 6x - 1080 = 0\\ \Leftrightarrow \left( {x - 30} \right)\left( {x + 36} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 30 = 0\\x + 36 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 30\;\;\left( {tm} \right)\\x = - 36\;\;\left( {ktm} \right)\end{array} \right..\end{array}\)
Vậy vận tốc của ca nô khi ngược dòng là \(30\;km/h.\)
Câu 4:
Phương pháp:
1) Chứng minh tứ giác BEDC có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối diện.
2) Chứng minh tam giác ABC đồng dạng với tam giác ADE.
3) Chứng minh các tứ giác BEHF và CDHF là các tứ giác nội tiếp.
4) Chứng minh \(\widehat {DOC} = \widehat {DEF} = 2\widehat {{B_1}}\).
Cách giải:
Cho tam giác ABC có ba góc nhọn (AB < AC), các đường cao AF, BD và CE cắt nhau tại H.
1) Chứng minh tứ giác BEDC nội tiếp đường tròn.
Xét tứ giác \(BEDC\) ta có: \(\widehat {BEC} = \widehat {BDC} = {90^0}\;\left( {gt} \right)\)
Mà hai góc này là hai góc kề 1 cạnh và cùng nhìn đoạn \(BC.\)
\( \Rightarrow BEDC\) là tứ giác nội tiếp (dấu hiệu nhận biết).
2) Chứng minh AE.AB = AD.AC.
Vì \(BEDC\) là tứ giác nội tiếp (cmt) nên \(\widehat {ADE} = \widehat {ABC}\) (góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối diện).
Xét \(\Delta ADE\) và \(\Delta ABC\) ta có:
\(\begin{array}{l}\widehat A\;chung\\\widehat {AED} = \widehat {ABC}\;\;\left( {cmt} \right)\\ \Rightarrow \Delta ADE \sim \Delta ABC\;\left( {g - g} \right).\\ \Rightarrow \dfrac{{AD}}{{AB}} = \dfrac{{AE}}{{AC}} \Leftrightarrow AD.AC = AE.AB\;\;\left( {dpcm} \right).\end{array}\)
3) Chứng minh FH là phân giác của \(\widehat {EFD}.\)
Ta có: \(BEHF\) là tứ giác nội tiếp \(\left( {do\;\;\widehat {BEH} + \widehat {HFB} = {{90}^0} + {{90}^0} = {{180}^0}} \right).\)
\( \Rightarrow \widehat {EBH} = \widehat {EFH}\) (hai góc nội tiếp cùng chắn cung \(EH\)) (1)
Có \(DCFH\) là tứ giác nội tiếp \(\left( {do\;\;\widehat {HFC} + \widehat {HDC} = {{90}^0} + {{90}^0} = {{180}^0}} \right).\)
\( \Rightarrow \widehat {DCH} = \widehat {DFH}\) (hai góc nội tiếp cùng chắn cung \(DH\)) (2)
Mà \(BEDC\) là tứ giác nội tiếp (cmt)
\( \Rightarrow \widehat {DCH} = \widehat {EBH}\) (hai góc nội tiếp cùng chắn cung \(DE\)) (3)
Từ (1), (2) và (3) ta có: \(\widehat {EFH} = \widehat {HFD}.\)
Hay \(FH\) là phân giác của \(\widehat {EFD}.\) (đpcm)
4) Gọi O là trung điểm của đoạn thẳng BC. Chứng minh \(\widehat {DOC} = \widehat {FED}.\)
Xét tam giác \(BDC\) vuông tại \(D\) có đường trung tuyến \(DO \Rightarrow DO = OB = OC\) (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông).
\( \Rightarrow \Delta BOD\) cân tại \(O \Rightarrow \widehat {BDO} = \widehat {DBO}\) (tính chất tam giác cân)
\( \Rightarrow \widehat {DOC} = \widehat {DBO} + \widehat {BDO} = 2\widehat {DBO} = 2\widehat {{B_1}}.\)
Vì \(EBCD\) là tứ giác nội tiếp \( \Rightarrow \widehat {{B_1}} = \widehat {{E_1}}\) (hai góc nội tiếp cùng chắn cung \(CD\))
Vì \(BEHF\) là tứ giác nội tiếp \( \Rightarrow \widehat {{B_1}} = \widehat {{E_2}}\) (hai góc nội tiếp cùng chắn cung \(HF\))
\( \Rightarrow \widehat {DOC} = 2\widehat {{B_1}} = \widehat {{E_1}} + \widehat {{E_2}} = \widehat {FED}.\;\;\;\left( {dpcm} \right)\)
Câu 5:
Phương pháp:
Sử dụng các công thức \({S_{xq}} = 2\pi Rh\) và \({V_{tru}} = \pi {R^2}h\) trong đó R, h lần lượt là bán kính đáy và chiều cao của hình trụ.
Cách giải :
Một hình trụ có diện tích xung quanh bằng \(256\pi c{m^2}\) và bán kính đáy bằng \(\dfrac{1}{2}\) đường cao. Tính bán kính đáy và thể tích hình trụ.
Gọi R, h lần lượt là bán kính đáy và chiều cao của hình trụ.
Vì bán kính đáy bằng \(\dfrac{1}{2}\) đường cao nên \(R = \dfrac{1}{2}h \Rightarrow h = 2R\)
Khi đó ta có \({S_{xq}} = 2\pi Rh = 2\pi .R.2R = 256\pi \Leftrightarrow {R^2} = 64 \Leftrightarrow R = 8\,\,\left( {cm} \right)\)
\( \Rightarrow h = 2.8 = 16\,\,\left( {cm} \right)\)
Vậy thể tích của khối trụ là \(V = \pi {R^2}h = \pi {.8^2}.16 = 1024\pi \,\,\left( {c{m^3}} \right)\).
Kỳ thi tuyển sinh vào lớp 10 môn Toán tỉnh Tiền Giang năm 2019 là một bước ngoặt quan trọng trong quá trình học tập của các em học sinh. Để chuẩn bị tốt nhất cho kỳ thi này, việc nắm vững cấu trúc đề thi, các dạng bài tập thường gặp và phương pháp giải quyết là vô cùng cần thiết. Bài viết này sẽ cung cấp cho các em một cái nhìn tổng quan về đề thi vào 10 môn Toán Tiền Giang năm 2019, phân tích chi tiết các dạng bài tập và hướng dẫn giải một số bài tập điển hình.
Đề thi vào 10 môn Toán Tiền Giang năm 2019 thường bao gồm các phần sau:
Các dạng bài tập thường gặp trong đề thi:
Đề thi chuyên thường có độ khó cao hơn, đòi hỏi học sinh phải có kiến thức vững chắc và khả năng vận dụng linh hoạt. Các bài toán trong đề thi chuyên thường mang tính chất mở, đòi hỏi học sinh phải có tư duy sáng tạo và khả năng giải quyết vấn đề.
Ví dụ, một bài toán về hình học trong đề thi chuyên có thể yêu cầu học sinh chứng minh một tính chất hình học phức tạp hoặc tính diện tích của một hình đa giác không đều.
Đề thi không chuyên thường có độ khó vừa phải, tập trung vào các kiến thức cơ bản và các kỹ năng giải toán thường gặp. Các bài toán trong đề thi không chuyên thường có tính ứng dụng cao, giúp học sinh rèn luyện khả năng giải quyết các vấn đề thực tế.
Ví dụ, một bài toán về đại số trong đề thi không chuyên có thể yêu cầu học sinh giải một phương trình bậc hai hoặc một hệ phương trình đơn giản.
Bài 1: Giải phương trình x2 - 5x + 6 = 0
Lời giải:
Phương trình đã cho là một phương trình bậc hai. Ta có thể giải phương trình này bằng cách sử dụng công thức nghiệm của phương trình bậc hai:
x = (-b ± √(b2 - 4ac)) / 2a
Trong trường hợp này, a = 1, b = -5, c = 6. Thay các giá trị này vào công thức nghiệm, ta được:
x = (5 ± √((-5)2 - 4 * 1 * 6)) / (2 * 1)
x = (5 ± √(25 - 24)) / 2
x = (5 ± 1) / 2
Vậy, phương trình có hai nghiệm là:
x1 = (5 + 1) / 2 = 3
x2 = (5 - 1) / 2 = 2
Bài 2: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài cạnh BC.
Lời giải:
Áp dụng định lý Pitago vào tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
Thay AB = 3cm, AC = 4cm vào, ta được:
BC2 = 32 + 42 = 9 + 16 = 25
BC = √25 = 5cm
Đề thi vào 10 môn Toán Tiền Giang năm 2019 là một kỳ thi quan trọng, đòi hỏi các em học sinh phải có sự chuẩn bị kỹ lưỡng. Hy vọng rằng bài viết này đã cung cấp cho các em những thông tin hữu ích và giúp các em tự tin hơn trong kỳ thi sắp tới. Chúc các em thành công!