Logo Header
  1. Môn Toán
  2. Đề thi vào 10 môn Toán Quảng Bình năm 2019

Đề thi vào 10 môn Toán Quảng Bình năm 2019

Đề thi vào 10 môn Toán Quảng Bình năm 2019: Tài liệu ôn thi không thể bỏ qua

Giaitoan.edu.vn xin giới thiệu bộ đề thi tuyển sinh vào lớp 10 môn Toán tỉnh Quảng Bình năm 2019 chính thức. Đây là tài liệu vô cùng quan trọng giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải toán và tự tin hơn trong kỳ thi sắp tới.

Bộ đề thi này bao gồm các đề thi chính thức của các trường THPT chuyên và không chuyên trên địa bàn tỉnh Quảng Bình, được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm của Giaitoan.edu.vn.

Câu 1 (2 điểm): Cho biểu thức

Đề bài

    Câu 1 (2 điểm): Cho biểu thức \(A = \dfrac{1}{y} + \dfrac{2}{{y + 1}} - \dfrac{1}{{{y^2} + y}}.\)

    a) Tìm điều kiện xác định và rút họn biểu thức \(A.\)

    b) Tìm giá trị nguyên của \(y\) để \(A\) nhận giá trị nguyên.

    Câu 2 (1,5 điểm): Cho hàm số \(y = \left( {a - 2} \right)x + 5\) có đồ thị là đường thẳng \(d.\)

    a) Với giá trị nào của \(a\) thì hàm số trên đồng biến trên \(\mathbb{R}.\)

    b) Tìm \(a\) để đường thẳng \(d\) đi qua điểm \(M\left( {2;3} \right)\).

    Câu 3 (2 điểm): Cho phương trình \({x^2} - \left( {m + 1} \right)x + 2m - 2 = 0\,\,\,\,\left( 1 \right)\) (với \(m\) là tham số).

    a) Giải phương trình \(\left( 1 \right)\) khi \(m = 2.\)

    b) Tìm giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(3\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} = 10.\)

    Câu 4 (1,0 điểm):

    Cho \(x,y\) là hai số thực dương thỏa mãn \(x + y = \dfrac{{2020}}{{2019}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{2019}}{x} + \dfrac{1}{{2019y}}\)

    Câu 5 (3,5 điểm): Từ một điểm \(A\) nằm ngoài đường tròn tâm \(O,\) ta kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn (\(B,\,\,C\) là các tiếp điểm). Trên cung nhỏ \(BC\) lấy một điểm \(M\left( {M \ne B,\,\,M \ne C} \right),\) kẻ \(MI \bot AB,\,\,MK \bot AC\,\,\left( {I \in AB,\,\,K \in AC} \right).\)

    a) Chứng minh \(AIMK\) là tứ giác nội tiếp đường tròn.

    b) Kẻ \(MP \bot BC\,\,\left( {P \in BC} \right).\) Chứng minh rằng \(\angle MPK = \angle MBC.\)

    c) Xác định vị trí của \(M\) trên cung nhỏ \(BC\) để tích \(MI.MK.MP\) đạt giá trị lớn nhất.

    Lựa chọn câu để xem lời giải nhanh hơn
    • Đề bài
    • Lời giải
    • Tải về

    Câu 1 (2 điểm): Cho biểu thức \(A = \dfrac{1}{y} + \dfrac{2}{{y + 1}} - \dfrac{1}{{{y^2} + y}}.\)

    a) Tìm điều kiện xác định và rút họn biểu thức \(A.\)

    b) Tìm giá trị nguyên của \(y\) để \(A\) nhận giá trị nguyên.

    Câu 2 (1,5 điểm): Cho hàm số \(y = \left( {a - 2} \right)x + 5\) có đồ thị là đường thẳng \(d.\)

    a) Với giá trị nào của \(a\) thì hàm số trên đồng biến trên \(\mathbb{R}.\)

    b) Tìm \(a\) để đường thẳng \(d\) đi qua điểm \(M\left( {2;3} \right)\).

    Câu 3 (2 điểm): Cho phương trình \({x^2} - \left( {m + 1} \right)x + 2m - 2 = 0\,\,\,\,\left( 1 \right)\) (với \(m\) là tham số).

    a) Giải phương trình \(\left( 1 \right)\) khi \(m = 2.\)

    b) Tìm giá trị của \(m\) để phương trình \(\left( 1 \right)\) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn \(3\left( {{x_1} + {x_2}} \right) - {x_1}{x_2} = 10.\)

    Câu 4 (1,0 điểm):

    Cho \(x,y\) là hai số thực dương thỏa mãn \(x + y = \dfrac{{2020}}{{2019}}\). Tìm giá trị nhỏ nhất của biểu thức \(P = \dfrac{{2019}}{x} + \dfrac{1}{{2019y}}\)

    Câu 5 (3,5 điểm): Từ một điểm \(A\) nằm ngoài đường tròn tâm \(O,\) ta kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn (\(B,\,\,C\) là các tiếp điểm). Trên cung nhỏ \(BC\) lấy một điểm \(M\left( {M \ne B,\,\,M \ne C} \right),\) kẻ \(MI \bot AB,\,\,MK \bot AC\,\,\left( {I \in AB,\,\,K \in AC} \right).\)

    a) Chứng minh \(AIMK\) là tứ giác nội tiếp đường tròn.

    b) Kẻ \(MP \bot BC\,\,\left( {P \in BC} \right).\) Chứng minh rằng \(\angle MPK = \angle MBC.\)

    c) Xác định vị trí của \(M\) trên cung nhỏ \(BC\) để tích \(MI.MK.MP\) đạt giá trị lớn nhất.

    Câu 1 (TH):

    Phương pháp:

    a) Sử dụng hằng đẳng thức: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,A \ge 0\\ - A\,\,\,khi\,\,A < 0\end{array} \right.\)

    Thực hiện các phép tính với căn bậc hai.

    b) Xác định mẫu thức chung của biểu thức

    Quy đồng các phân thức, thực hiện các phép toán từ đó rút gọn được biểu thức.

    Cách giải:

    a) \(P = \sqrt {12} - \sqrt {27} + \sqrt {48} .\)

    \(\begin{array}{l}P = \sqrt {12} - \sqrt {27} + \sqrt {48} .\\\,\,\,\,\, = \sqrt {{2^2}.3} - \sqrt {{3^2}.3} + \sqrt {{4^2}.3} \\\,\,\,\,\, = 2\sqrt 3 - 3\sqrt 3 + 4\sqrt 3 \\\,\,\,\,\, = 3\sqrt 3 .\end{array}\)

    Vậy \(P = 3\sqrt 3 .\)

    b) \(Q = \left( {5 - \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}} \right)\) với \(x \ge 0,\,\,x \ne 1.\)

    Điều kiện: \(x \ge 0,\,\,x \ne 1.\)

    \(\begin{array}{l}Q = \left( {5 - \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}} \right)\\\,\,\,\, = \left( {5 - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\sqrt x - 1}}} \right)\\\,\,\,\, = \left( {5 - \sqrt x } \right)\left( {5 + \sqrt x } \right)\\\,\,\,\, = 25 - x.\end{array}\)

    Vậy \(Q = 25 - x\) khi \(x \ge 0,\,\,x \ne 1.\)

    Câu 2 (TH):

    Phương pháp:

    a) Hàm số \(y = ax + b\) nghịch biến trên \(\mathbb{R} \Leftrightarrow a < 0\)

    b) Sử dụng phương pháp cộng đại số, tìm được nghiệm \(x\)

    Sử dụng phương pháp thế, tìm được nghiệm \(y\)

    Kết luận nghiệm \(\left( {x;y} \right)\) của hệ phương trình.

    Cách giải:

    a) Hàm số \(y = \left( {n - 1} \right)x + 2\) nghịch biến trên \(\mathbb{R}\) \( \Leftrightarrow n - 1 < 0\) \( \Leftrightarrow n < 1.\)

    Vậy \(n < 1\) thì hàm số đã cho nghịch biến trên \(\mathbb{R}.\)

    b) \(\left\{ \begin{array}{l}2x + 3y = 8\\ - 4x + 3y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6x = 6\\y = \dfrac{{8 - 2x}}{3}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = \dfrac{{8 - 2.1}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

    Vậy hệ phương trình có tập nghiệm \(S = \left\{ {\left( {1;\,\,2} \right)} \right\}.\)

    Câu 3 (VD):

    Phương pháp:

    a) Tính nhẩm nghiệm của phương trình bậc hai: Nếu \(a - b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = - 1;{x_2} = - \dfrac{c}{a}\)

    b) Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt \(\Delta > 0\) (hoặc \(\Delta ' > 0\))

    Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(n\)

    Thay vào \(2020\left( {{x_1} + {x_2}} \right) + 2021{x_1}{x_2} = - 2014.\), ta tìm được \(n\)

    Cách giải:

    a) Với \(n = 1\) ta có phương trình \(\left( 1 \right)\) trở thành: \({x^2} + 6x + 5 = 0\)

    Phương trình có \(a - b + c = 1 - 6 + 5 = 0\)

    \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} = - 1\) và \({x_2} = - \dfrac{c}{a} = - 5.\)

    Vậy với \(n = 1\) thì phương trình đã cho có tập nghiệm \(S = \left\{ { - 5; - 1} \right\}.\)

    b) Xét phương trình \({x^2} + 6x + n + 4 = 0\,\,\,\,\left( 1 \right)\)

    Phương trình có: \(\Delta ' = 9 - n - 4 = 5 - n.\)

    Phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) \( \Leftrightarrow \Delta ' > 0\) \( \Leftrightarrow 5 - n > 0\) \( \Leftrightarrow n < 5.\)

    Với \(n < 5\) thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\)

    Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 6\\{x_1}{x_2} = n + 4\end{array} \right..\)

    Theo đề bài ta có: \(2020\left( {{x_1} + {x_2}} \right) + 2021{x_1}{x_2} = - 2014\)

    \(\begin{array}{l} \Leftrightarrow 2020.\left( { - 6} \right) + 2021.\left( {n + 4} \right) = - 2014\\ \Leftrightarrow - 12120 + 2021n + 8084 = - 2014\\ \Leftrightarrow 2021n = 2022\\ \Leftrightarrow n = \dfrac{{2022}}{{2021}}\,\,\,\left( {tm} \right).\end{array}\)

    Vậy \(n = \dfrac{{2022}}{{2021}}\) thỏa mãn bài toán.

    Câu 4 (VDC):

    Phương pháp:

    Áp dụng bất đẳng thức Cô – si cho \(\sqrt {9a\left( {8a + b} \right)} \) và \(\sqrt {9b\left( {8b + a} \right)} \)

    Từ đó, suy ra \(\sqrt {9a\left( {8a + b} \right)} + \sqrt {9b\left( {8b + a} \right)} \) sau đó, suy ra được \(\dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }}\)

    Cách giải:

    Áp dụng BĐT Cô-si ta có:

    \(\begin{array}{l}\sqrt {9a\left( {8a + b} \right)} \le \dfrac{{9a + 8a + b}}{2} = \dfrac{{17a + b}}{2}\\\sqrt {9b\left( {8b + a} \right)} \le \dfrac{{9b + 8b + a}}{2} = \dfrac{{17b + a}}{2}\\ \Rightarrow \sqrt {9a\left( {8a + b} \right)} + \sqrt {9b\left( {8b + a} \right)} \le \dfrac{{17a + b}}{2} + \dfrac{{17b + a}}{2} = 9\left( {a + b} \right)\\ \Rightarrow \sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} \le 3\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }} \ge \dfrac{1}{3}\,\,\,\left( {dpcm} \right).\end{array}\)

    Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}9a = 8a + b\\9b = 8b + a\end{array} \right. \Leftrightarrow a = b.\)

    Vậy \(\dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }} \ge \dfrac{1}{3}.\)

    Câu 5 (VD):

    Phương pháp:

    a) Vận dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

    b) Ta sẽ chứng minh: \(\angle PEB = {180^0} - \angle FAB\,\,\,\left( 1 \right);\angle FPB = {180^0} - \angle FAB\,\,\,\left( 2 \right)\)

    Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow \angle FBB = \angle PEB\,\,\left( { = {{180}^0} - \angle FAB} \right)\)

    Chứng minh được:

    c)

    Áp dụng hệ thức lượng trong \(\Delta APB\)ta có:\(A{P^2} = AH.AB\)

    Áp dụng định lý Py – ta – go cho \(\Delta APB\): \(B{P^2} + A{P^2} = A{B^2} = 4{R^2}\)

    \( \Rightarrow BE.BF + AH.AB = 4{R^2}\) (đpcm)

    Cách giải:

    Đề thi vào 10 môn Toán Quảng Bình năm 2019 1

    a) Ta có: \(\angle AFB\) là góc nội tiếp chắn nửa đường tròn \(\left( {O;\,\,R} \right).\)

    \( \Rightarrow \angle AFB = {90^0}\)

    Xét tứ giác \(AHEF\) ta có: \(\angle AFE + \angle AHE = {90^0} + {90^0} = {180^0}\)

    \( \Rightarrow AHEF\) là tứ giác nội tiếp. (dhnb)

    b) Ta có: \(AHEF\) là tứ giác nội tiếp (cmt)

    \( \Rightarrow \angle FAH + \angle FEH = {180^0}\) (tính chất tứ giác nội tiếp)

    Lại có: \(\angle PEB = \angle FEH\) (hai góc đối đỉnh).

    \( \Rightarrow \angle PEB + \angle FAB = {180^0}\) \( \Rightarrow \angle PEB = {180^0} - \angle FAB\,\,\,\left( 1 \right)\)

    Mà \(ABPF\) là tứ giác nội tiếp đường tròn \(\left( {O;\,\,R} \right)\)

    \( \Rightarrow \angle FAB + \angle BPF = {180^0}\) \( \Rightarrow \angle FPB = {180^0} - \angle FAB\,\,\,\left( 2 \right)\)

    Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow \angle FBB = \angle PEB\,\,\left( { = {{180}^0} - \angle FAB} \right)\)

    Xét \(\Delta BEP\) và \(\Delta BPF\) ta có:

    \(\begin{array}{l}\angle FBB = \angle PEB\,\,\,\left( {cmt} \right)\\\angle B\,\,chung\\ \Rightarrow \Delta BEP \backsim \Delta BPF\,\,\,\left( {g - g} \right).\end{array}\)

    c) Ta có: \(\Delta BEP \backsim \Delta BPF\,\,\,\left( {cmt} \right)\)

    \( \Rightarrow \dfrac{{BE}}{{BP}} = \dfrac{{BP}}{{BF}} \Rightarrow B{P^2} = BE + BF.\)

    Vì \(\angle APB\) là góc nội tiếp chắn nửa đường tròn \(\left( {O;\,\,R} \right)\)

    \(\angle APB = {90^0}\) hay \(AP \bot PB\)

    Áp dụng hệ thức lượng cho \(\Delta APB\) vuông tại \(P\) có đường cao \(PH\) ta có:

    \(A{P^2} = AH.AB\)

    \( \Rightarrow BE.BF + AH.AB = B{P^2} + A{P^2}\)

    Áp dụng định lý Pitago cho \(\Delta APB\) vuông tại \(P\) ta có:

    \(\begin{array}{l}B{P^2} + A{P^2} = A{B^2} = {\left( {2R} \right)^2} = 4{R^2}\\ \Rightarrow BE.BF + AH.AB = 4{R^2}\,\,\,\,\left( {dpcm} \right).\end{array}\)

    Lời giải

      Câu 1 (TH):

      Phương pháp:

      a) Sử dụng hằng đẳng thức: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,A \ge 0\\ - A\,\,\,khi\,\,A < 0\end{array} \right.\)

      Thực hiện các phép tính với căn bậc hai.

      b) Xác định mẫu thức chung của biểu thức

      Quy đồng các phân thức, thực hiện các phép toán từ đó rút gọn được biểu thức.

      Cách giải:

      a) \(P = \sqrt {12} - \sqrt {27} + \sqrt {48} .\)

      \(\begin{array}{l}P = \sqrt {12} - \sqrt {27} + \sqrt {48} .\\\,\,\,\,\, = \sqrt {{2^2}.3} - \sqrt {{3^2}.3} + \sqrt {{4^2}.3} \\\,\,\,\,\, = 2\sqrt 3 - 3\sqrt 3 + 4\sqrt 3 \\\,\,\,\,\, = 3\sqrt 3 .\end{array}\)

      Vậy \(P = 3\sqrt 3 .\)

      b) \(Q = \left( {5 - \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}} \right)\) với \(x \ge 0,\,\,x \ne 1.\)

      Điều kiện: \(x \ge 0,\,\,x \ne 1.\)

      \(\begin{array}{l}Q = \left( {5 - \dfrac{{x + \sqrt x }}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{x - \sqrt x }}{{\sqrt x - 1}}} \right)\\\,\,\,\, = \left( {5 - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x + 1}}} \right).\left( {5 + \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\sqrt x - 1}}} \right)\\\,\,\,\, = \left( {5 - \sqrt x } \right)\left( {5 + \sqrt x } \right)\\\,\,\,\, = 25 - x.\end{array}\)

      Vậy \(Q = 25 - x\) khi \(x \ge 0,\,\,x \ne 1.\)

      Câu 2 (TH):

      Phương pháp:

      a) Hàm số \(y = ax + b\) nghịch biến trên \(\mathbb{R} \Leftrightarrow a < 0\)

      b) Sử dụng phương pháp cộng đại số, tìm được nghiệm \(x\)

      Sử dụng phương pháp thế, tìm được nghiệm \(y\)

      Kết luận nghiệm \(\left( {x;y} \right)\) của hệ phương trình.

      Cách giải:

      a) Hàm số \(y = \left( {n - 1} \right)x + 2\) nghịch biến trên \(\mathbb{R}\) \( \Leftrightarrow n - 1 < 0\) \( \Leftrightarrow n < 1.\)

      Vậy \(n < 1\) thì hàm số đã cho nghịch biến trên \(\mathbb{R}.\)

      b) \(\left\{ \begin{array}{l}2x + 3y = 8\\ - 4x + 3y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6x = 6\\y = \dfrac{{8 - 2x}}{3}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = \dfrac{{8 - 2.1}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)

      Vậy hệ phương trình có tập nghiệm \(S = \left\{ {\left( {1;\,\,2} \right)} \right\}.\)

      Câu 3 (VD):

      Phương pháp:

      a) Tính nhẩm nghiệm của phương trình bậc hai: Nếu \(a - b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt: \({x_1} = - 1;{x_2} = - \dfrac{c}{a}\)

      b) Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt \(\Delta > 0\) (hoặc \(\Delta ' > 0\))

      Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(n\)

      Thay vào \(2020\left( {{x_1} + {x_2}} \right) + 2021{x_1}{x_2} = - 2014.\), ta tìm được \(n\)

      Cách giải:

      a) Với \(n = 1\) ta có phương trình \(\left( 1 \right)\) trở thành: \({x^2} + 6x + 5 = 0\)

      Phương trình có \(a - b + c = 1 - 6 + 5 = 0\)

      \( \Rightarrow \) Phương trình có hai nghiệm phân biệt: \({x_1} = - 1\) và \({x_2} = - \dfrac{c}{a} = - 5.\)

      Vậy với \(n = 1\) thì phương trình đã cho có tập nghiệm \(S = \left\{ { - 5; - 1} \right\}.\)

      b) Xét phương trình \({x^2} + 6x + n + 4 = 0\,\,\,\,\left( 1 \right)\)

      Phương trình có: \(\Delta ' = 9 - n - 4 = 5 - n.\)

      Phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) \( \Leftrightarrow \Delta ' > 0\) \( \Leftrightarrow 5 - n > 0\) \( \Leftrightarrow n < 5.\)

      Với \(n < 5\) thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}.\)

      Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 6\\{x_1}{x_2} = n + 4\end{array} \right..\)

      Theo đề bài ta có: \(2020\left( {{x_1} + {x_2}} \right) + 2021{x_1}{x_2} = - 2014\)

      \(\begin{array}{l} \Leftrightarrow 2020.\left( { - 6} \right) + 2021.\left( {n + 4} \right) = - 2014\\ \Leftrightarrow - 12120 + 2021n + 8084 = - 2014\\ \Leftrightarrow 2021n = 2022\\ \Leftrightarrow n = \dfrac{{2022}}{{2021}}\,\,\,\left( {tm} \right).\end{array}\)

      Vậy \(n = \dfrac{{2022}}{{2021}}\) thỏa mãn bài toán.

      Câu 4 (VDC):

      Phương pháp:

      Áp dụng bất đẳng thức Cô – si cho \(\sqrt {9a\left( {8a + b} \right)} \) và \(\sqrt {9b\left( {8b + a} \right)} \)

      Từ đó, suy ra \(\sqrt {9a\left( {8a + b} \right)} + \sqrt {9b\left( {8b + a} \right)} \) sau đó, suy ra được \(\dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }}\)

      Cách giải:

      Áp dụng BĐT Cô-si ta có:

      \(\begin{array}{l}\sqrt {9a\left( {8a + b} \right)} \le \dfrac{{9a + 8a + b}}{2} = \dfrac{{17a + b}}{2}\\\sqrt {9b\left( {8b + a} \right)} \le \dfrac{{9b + 8b + a}}{2} = \dfrac{{17b + a}}{2}\\ \Rightarrow \sqrt {9a\left( {8a + b} \right)} + \sqrt {9b\left( {8b + a} \right)} \le \dfrac{{17a + b}}{2} + \dfrac{{17b + a}}{2} = 9\left( {a + b} \right)\\ \Rightarrow \sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} \le 3\left( {a + b} \right)\\ \Rightarrow \dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }} \ge \dfrac{1}{3}\,\,\,\left( {dpcm} \right).\end{array}\)

      Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}9a = 8a + b\\9b = 8b + a\end{array} \right. \Leftrightarrow a = b.\)

      Vậy \(\dfrac{{a + b}}{{\sqrt {a\left( {8a + b} \right)} + \sqrt {b\left( {8b + a} \right)} }} \ge \dfrac{1}{3}.\)

      Câu 5 (VD):

      Phương pháp:

      a) Vận dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \({180^0}\) là tứ giác nội tiếp.

      b) Ta sẽ chứng minh: \(\angle PEB = {180^0} - \angle FAB\,\,\,\left( 1 \right);\angle FPB = {180^0} - \angle FAB\,\,\,\left( 2 \right)\)

      Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow \angle FBB = \angle PEB\,\,\left( { = {{180}^0} - \angle FAB} \right)\)

      Chứng minh được:

      c)

      Áp dụng hệ thức lượng trong \(\Delta APB\)ta có:\(A{P^2} = AH.AB\)

      Áp dụng định lý Py – ta – go cho \(\Delta APB\): \(B{P^2} + A{P^2} = A{B^2} = 4{R^2}\)

      \( \Rightarrow BE.BF + AH.AB = 4{R^2}\) (đpcm)

      Cách giải:

      Đề thi vào 10 môn Toán Quảng Bình năm 2019 1 1

      a) Ta có: \(\angle AFB\) là góc nội tiếp chắn nửa đường tròn \(\left( {O;\,\,R} \right).\)

      \( \Rightarrow \angle AFB = {90^0}\)

      Xét tứ giác \(AHEF\) ta có: \(\angle AFE + \angle AHE = {90^0} + {90^0} = {180^0}\)

      \( \Rightarrow AHEF\) là tứ giác nội tiếp. (dhnb)

      b) Ta có: \(AHEF\) là tứ giác nội tiếp (cmt)

      \( \Rightarrow \angle FAH + \angle FEH = {180^0}\) (tính chất tứ giác nội tiếp)

      Lại có: \(\angle PEB = \angle FEH\) (hai góc đối đỉnh).

      \( \Rightarrow \angle PEB + \angle FAB = {180^0}\) \( \Rightarrow \angle PEB = {180^0} - \angle FAB\,\,\,\left( 1 \right)\)

      Mà \(ABPF\) là tứ giác nội tiếp đường tròn \(\left( {O;\,\,R} \right)\)

      \( \Rightarrow \angle FAB + \angle BPF = {180^0}\) \( \Rightarrow \angle FPB = {180^0} - \angle FAB\,\,\,\left( 2 \right)\)

      Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) \( \Rightarrow \angle FBB = \angle PEB\,\,\left( { = {{180}^0} - \angle FAB} \right)\)

      Xét \(\Delta BEP\) và \(\Delta BPF\) ta có:

      \(\begin{array}{l}\angle FBB = \angle PEB\,\,\,\left( {cmt} \right)\\\angle B\,\,chung\\ \Rightarrow \Delta BEP \backsim \Delta BPF\,\,\,\left( {g - g} \right).\end{array}\)

      c) Ta có: \(\Delta BEP \backsim \Delta BPF\,\,\,\left( {cmt} \right)\)

      \( \Rightarrow \dfrac{{BE}}{{BP}} = \dfrac{{BP}}{{BF}} \Rightarrow B{P^2} = BE + BF.\)

      Vì \(\angle APB\) là góc nội tiếp chắn nửa đường tròn \(\left( {O;\,\,R} \right)\)

      \(\angle APB = {90^0}\) hay \(AP \bot PB\)

      Áp dụng hệ thức lượng cho \(\Delta APB\) vuông tại \(P\) có đường cao \(PH\) ta có:

      \(A{P^2} = AH.AB\)

      \( \Rightarrow BE.BF + AH.AB = B{P^2} + A{P^2}\)

      Áp dụng định lý Pitago cho \(\Delta APB\) vuông tại \(P\) ta có:

      \(\begin{array}{l}B{P^2} + A{P^2} = A{B^2} = {\left( {2R} \right)^2} = 4{R^2}\\ \Rightarrow BE.BF + AH.AB = 4{R^2}\,\,\,\,\left( {dpcm} \right).\end{array}\)

      Làm chủ Toán 9, tự tin vào phòng thi! Đừng bỏ lỡ Đề thi vào 10 môn Toán Quảng Bình năm 2019 đặc sắc thuộc chuyên mục toán 9 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thcs được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình sách giáo khoa mới nhất, đây chính là công cụ đắc lực giúp các em tối ưu hóa ôn luyện, củng cố kiến thức vững chắc và thuần thục mọi dạng bài thi khó nhằn. Phương pháp học trực quan, khoa học sẽ mang lại hiệu quả vượt trội, giúp con bạn chinh phục mọi thử thách một cách dễ dàng.

      Đề thi vào 10 môn Toán Quảng Bình năm 2019: Phân tích chi tiết và hướng dẫn giải

      Kỳ thi tuyển sinh vào lớp 10 là một bước ngoặt quan trọng trong quá trình học tập của mỗi học sinh. Để đạt kết quả tốt nhất, việc chuẩn bị kỹ lưỡng là vô cùng cần thiết. Đề thi vào 10 môn Toán Quảng Bình năm 2019 là một nguồn tài liệu quý giá để các em học sinh ôn tập và rèn luyện kỹ năng giải toán.

      Cấu trúc đề thi vào 10 môn Toán Quảng Bình năm 2019

      Đề thi vào 10 môn Toán Quảng Bình năm 2019 thường có cấu trúc gồm các phần sau:

      • Phần trắc nghiệm: Thường chiếm khoảng 30-40% tổng số điểm, tập trung vào các kiến thức cơ bản và các công thức toán học.
      • Phần tự luận: Chiếm khoảng 60-70% tổng số điểm, bao gồm các bài toán đại số, hình học và các bài toán thực tế.

      Các chủ đề toán học thường xuất hiện trong đề thi

      Các chủ đề toán học thường xuyên xuất hiện trong đề thi vào 10 môn Toán Quảng Bình năm 2019 bao gồm:

      • Đại số: Phương trình bậc nhất, phương trình bậc hai, hệ phương trình, bất đẳng thức, hàm số.
      • Hình học: Tam giác, tứ giác, đường tròn, hệ tọa độ.
      • Số học: Các phép toán cơ bản, phân số, tỉ lệ, phần trăm.
      • Toán thực tế: Các bài toán liên quan đến ứng dụng toán học trong đời sống.

      Hướng dẫn giải đề thi vào 10 môn Toán Quảng Bình năm 2019

      Để giải đề thi vào 10 môn Toán Quảng Bình năm 2019 hiệu quả, các em học sinh cần:

      1. Nắm vững kiến thức cơ bản: Hiểu rõ các định nghĩa, định lý và công thức toán học.
      2. Rèn luyện kỹ năng giải toán: Luyện tập giải nhiều bài tập khác nhau để làm quen với các dạng bài và phương pháp giải.
      3. Đọc kỹ đề bài: Hiểu rõ yêu cầu của đề bài trước khi bắt đầu giải.
      4. Sử dụng các công cụ hỗ trợ: Máy tính bỏ túi, thước kẻ, compa.
      5. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

      Lợi ích của việc luyện tập với đề thi vào 10 môn Toán Quảng Bình năm 2019

      Việc luyện tập với đề thi vào 10 môn Toán Quảng Bình năm 2019 mang lại nhiều lợi ích cho các em học sinh:

      • Làm quen với cấu trúc đề thi: Giúp các em học sinh hiểu rõ cấu trúc đề thi và biết cách phân bổ thời gian hợp lý.
      • Rèn luyện kỹ năng giải toán: Giúp các em học sinh rèn luyện kỹ năng giải toán và nâng cao khả năng tư duy logic.
      • Đánh giá năng lực bản thân: Giúp các em học sinh đánh giá năng lực bản thân và xác định những kiến thức còn yếu để tập trung ôn tập.
      • Tăng sự tự tin: Giúp các em học sinh tự tin hơn khi bước vào kỳ thi chính thức.

      Giaitoan.edu.vn: Nền tảng học toán online uy tín

      Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp các khóa học toán chất lượng cao, đội ngũ giáo viên giàu kinh nghiệm và các tài liệu ôn thi hữu ích. Chúng tôi cam kết giúp các em học sinh đạt kết quả tốt nhất trong kỳ thi tuyển sinh vào lớp 10.

      Lời khuyên cho thí sinh

      Ngoài việc luyện tập với đề thi vào 10 môn Toán Quảng Bình năm 2019, các em học sinh cũng nên:

      • Xây dựng kế hoạch học tập khoa học: Phân bổ thời gian hợp lý cho từng môn học và từng chủ đề toán học.
      • Tìm kiếm sự giúp đỡ từ giáo viên và bạn bè: Nếu gặp khó khăn trong quá trình học tập, hãy tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.
      • Giữ gìn sức khỏe: Đảm bảo ngủ đủ giấc, ăn uống đầy đủ và tập thể dục thường xuyên.
      • Giữ tâm lý thoải mái: Tránh căng thẳng và áp lực trước kỳ thi.

      Kết luận

      Đề thi vào 10 môn Toán Quảng Bình năm 2019 là một tài liệu quan trọng giúp các em học sinh ôn tập và rèn luyện kỹ năng giải toán. Hy vọng rằng với những thông tin và hướng dẫn trên, các em học sinh sẽ đạt kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em thành công!

      Tài liệu, đề thi và đáp án Toán 9