Logo Header
  1. Môn Toán
  2. Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều

Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều

Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều

Chào mừng các em học sinh đến với bài học về Lý thuyết Bội chung và bội chung nhỏ nhất trong chương trình Toán 6 Cánh diều. Bài học này sẽ cung cấp cho các em những kiến thức cơ bản và quan trọng về các khái niệm này, cùng với các ví dụ minh họa cụ thể.

Nắm vững lý thuyết này là nền tảng để giải quyết các bài toán liên quan đến số học, đặc biệt là trong các bài kiểm tra và thi cử. Hãy cùng giaitoan.edu.vn khám phá bài học này một cách hiệu quả nhất!

Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều ngắn gọn, đầy đủ, dễ hiểu

I. Bội chung

1. Định nghĩa

Bội chung của hai hay nhiều số là bội của tất cả các số đó.

2. Kí hiệu

BC\(\left( {a,b} \right)\) là tập hợp các bội chung của \(a\) và \(b\).

3. Cách tìm bội chung

a) Tìm bội chung của hai số a và b

Bước 1: Viết tập hợp các bội B(a) của a và các bội B(b) của b.

Bước 2: Tìm những phần tử chung của B(a) và B(b).

Ví dụ: \(B\left( 3 \right) = \left\{ {0;3;6;9;12;...} \right\}\); \(B\left( 2 \right) = \left\{ {0;2;4;6;8;10;12;...} \right\}\)

Nên \(BC\left( {2,3} \right) = \left\{ {0;6;12;...} \right\}\)

b) Tìm bội chung của ba số a, b và c

Bước 1: Viết tập hợp các bội của a, của b và của c: B(a), B(b), B(c)

Bước 2: Tìm những phần tử chung của B(a), B(b) và B(c).

Nhận xét:

+) \(x \in BC\left( {a;b} \right)\) nếu \(x \vdots a\) và \(x \vdots b\)

+) \(x \in BC\left( {a;b;c} \right)\) nếu \(x \vdots a\); \(x \vdots b\) và \(x \vdots c\)

Chú ý:

+ Ta chỉ xét bội chung của các số khác 0.

+ Giao của hai tập hợp là một tập hợp gồm các phần tử chung của hai tập hợp đó.

+ Kí hiệu: Giao của tập hợp A và tập hợp B là \(A \cap B\)

Ví dụ:\(B\left( 2 \right) \cap B\left( 3 \right) = BC\left( {2;3} \right)\)

II. Bội chung nhỏ nhất

1. Định nghĩa

Bội chung nhỏ nhất (BCNN) của hai hay nhiều số là số nhỏ nhấtkhác 0 trong tập hợp các bội chung của các số đó..

2.Kí hiệu

+) \(BCNN\left( {a,b} \right)\) là bội chung nhỏ nhất của \(a\) và \(b\).

+) BC\(\left( {a,b} \right)\) là tập hợp còn BCNN\(\left( {a,b} \right)\) là một số.

3. Cách tìm bội chung lớn nhất bằng định nghĩa

a) Cách tìm bội chung nhỏ nhất trong các trường hợp đặc biệt

Nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho là số lớn nhất đó.

Nếu \(a \vdots b\) thì \(BCNN\left( {a,b} \right) = a\)

Với mọi số tự nhiên a và b ta có:

\(BCNN\left( {a,1} \right) = a;\)\(BCNN\left( {a,b,1} \right) = BCNN\left( {a,b} \right)\)

Ví dụ:

Bội chung nhỏ nhất của 12 và 36 là 12 vì \(36 \vdots 12\).

b) Cách tìm BCNN của hai số a và b bằng định nghĩa

Bước 1. Tìm tập hợp các bội chung của hai số a và b: BC\(\left( {a,b} \right)\)

Bước 2. Tìm số nhỏ nhất khác 0 trong các bội chung vừa tìm được: BCNN\(\left( {a,b} \right)\)

Ví dụ : Tìm BCNN (15 ; 20)

\(\begin{array}{l}B\left( {15} \right) = \left\{ {0;15;30;45;60;75;90;105;120;..} \right\}\\B\left( {20} \right) = \left\{ {0;20;40;60;80;100;120;...} \right\}\\BC\left( {15,20} \right) = \left\{ {0;60;120;...} \right\}\end{array}\)

Số nhỏ nhất khác 0 trong các bội chung trên là 60 nên BCNN (15 , 20)=60.

III. Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố

1. Cách tìm bội chung nhỏ nhất-BCNN

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :

Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3 : Lập tích các thừa số đã chọnmỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Ví dụ: Tìm BCNN của \(15\) và \(20.\)

Ta có \(15 = 3.5;20 = {2^2}.5\)

Nên \(BCNN\left( {15,20} \right) = {2^2}.3.5 = 60.\)

2. Cách tìm bội chung thông qua bội chung nhỏ nhất

Để tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó.

Ví dụ: \(BCNN\left( {15,20} \right) = 60\) nên \(BC\left( {15,20} \right) = B\left( {60} \right) = \left\{ {0;60;120;...} \right\}\)

IV. Ứng dụng trong quy đồng mẫu các phân số

Tìm mẫu chung của hai phân số

Cách 1: Chọn mẫu chung cho hai phân số là bội chung nhỏ nhất của hai mẫu số đó.

Cách 2: Chọn bội chung bất kì khác 0 của 2 mẫu số đó.

Ví dụ:Quy đồng mẫu số hai phân số \(\dfrac{7}{{30}}\) và \(\dfrac{5}{{42}}\)

\(\begin{array}{l}30 = 2.3.5\\42 = 2.3.7\end{array}\)

\(\begin{array}{l} \Rightarrow BCNN\left( {30;42} \right) = 2.3.5.7 = 210\\ \Rightarrow BC\left( {30;42} \right) = \left\{ {0;210;420;...} \right\}\end{array}\)

+) Cách 1: Chọn mẫu chung là 210. Ta được:

\(\begin{array}{l}\dfrac{7}{{30}} = \dfrac{{7.7}}{{210}} = \dfrac{{49}}{{210}}\\\dfrac{5}{{42}} = \dfrac{{5.5}}{{42.5}} = \dfrac{{25}}{{210}}\end{array}\)

+) Cách 2: Chọn mẫu chung là một bội chung bất kì khác 0 của 30 và 42. Chẳng hạn 420, ta được:

\(\begin{array}{l}\dfrac{7}{{30}} = \dfrac{{7.14}}{{30.14}} = \dfrac{{98}}{{420}}\\\dfrac{5}{{42}} = \dfrac{{5.10}}{{42.10}} = \dfrac{{50}}{{420}}\end{array}\)

CÁC DẠNG TOÁN VỀ BỘI CHUNG. BỘI CHUNG NHỎ NHẤT

I. Nhận biết và viết tập hợp các bội chung của hai hay nhiều số

Phương pháp:

+ Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không?

+ Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó.

II. Bài toán đưa về việc tìm BC, BCNN của hai hay nhiều số

Phương pháp:

Phân tích đề bài, suy luận để đưa về việc tìm BC, BCNN của hai hay nhiều số.

Ví dụ:

Có hai chiếc máy bay A và B. Lịch bảo dưỡng định kì đối với máy A là 6 tháng và đối với máy B là 9 tháng. Hai máy vừa cùng được bảo dưỡng vào tháng 5. Hỏi sau ít nhất bao nhiêu tháng nữa thì hai máy lại được bảo dưỡng trong cùng một tháng.

Giải

Thời gian hai máy bay được bảo dưỡng cùng nhau trong lần tiếp theo là BCNN của 6 và 9.

Ta có: BCNN(6, 9)= 36

Vậy sau ít nhất 36 tháng thì hai máy bay lại được bảo dưỡng trong cùng một tháng.

III. Tìm các bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước

Phương pháp:

+ Tìm BCNN của hai hay nhiều số cho trước.

+ Tìm các bội của BCNN.

+ Chọn trong số đó các ước hoặc các bội thỏa mãn điều kiện đã cho.

Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều 1

Tự tin bứt phá năm học lớp 6 ngay từ đầu! Khám phá Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều – nội dung then chốt trong chuyên mục giải bài tập toán lớp 6 trên nền tảng soạn toán. Với bộ bài tập toán thcs được biên soạn chuyên sâu, cập nhật chính xác theo khung chương trình sách giáo khoa THCS, đây chính là người bạn đồng hành đáng tin cậy giúp các em tối ưu hóa toàn diện quá trình ôn luyện và xây dựng nền tảng kiến thức Toán vững chắc thông qua phương pháp tiếp cận trực quan, mang lại hiệu quả vượt trội không ngờ.

Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều

Bài học này sẽ trình bày chi tiết về khái niệm bội chung, bội chung nhỏ nhất (BCNN) và cách tìm BCNN của hai hay nhiều số. Chúng ta sẽ cùng nhau tìm hiểu các phương pháp khác nhau để xác định BCNN, bao gồm phương pháp liệt kê, phương pháp phân tích ra thừa số nguyên tố và ứng dụng của BCNN trong giải toán.

1. Khái niệm Bội chung

Bội chung của hai hay nhiều số là số chia hết cho tất cả các số đó. Ví dụ, bội chung của 2 và 3 là 6, 12, 18,...

  • Để tìm bội chung của hai số, ta có thể liệt kê các bội của mỗi số và tìm các số chung trong danh sách đó.
  • Bội chung nhỏ nhất (BCNN) của hai hay nhiều số là số nhỏ nhất trong các bội chung của chúng.

2. Khái niệm Bội chung nhỏ nhất (BCNN)

BCNN của hai số a và b, ký hiệu là BCNN(a, b), là số nhỏ nhất mà cả a và b đều chia hết.

Ví dụ: BCNN(4, 6) = 12

3. Các phương pháp tìm BCNN

  1. Phương pháp liệt kê: Liệt kê các bội của mỗi số và tìm số nhỏ nhất chung.
  2. Phương pháp phân tích ra thừa số nguyên tố:
    • Phân tích mỗi số ra thừa số nguyên tố.
    • Chọn mỗi thừa số nguyên tố với số mũ lớn nhất xuất hiện trong các phân tích.
    • Nhân các thừa số nguyên tố đã chọn lại với nhau.

4. Ví dụ minh họa

Ví dụ 1: Tìm BCNN(8, 12)

Giải:

  • Phân tích ra thừa số nguyên tố: 8 = 23, 12 = 22.3
  • Chọn thừa số nguyên tố với số mũ lớn nhất: 23, 31
  • BCNN(8, 12) = 23.3 = 24

Ví dụ 2: Tìm BCNN(15, 20, 25)

Giải:

  • Phân tích ra thừa số nguyên tố: 15 = 3.5, 20 = 22.5, 25 = 52
  • Chọn thừa số nguyên tố với số mũ lớn nhất: 22, 31, 52
  • BCNN(15, 20, 25) = 22.3.52 = 300

5. Ứng dụng của BCNN

BCNN được sử dụng trong nhiều bài toán thực tế, chẳng hạn như:

  • Tìm thời điểm hai hay nhiều sự kiện xảy ra đồng thời.
  • Quy đồng mẫu số của các phân số.
  • Giải các bài toán về chia hết và ước chung.

6. Bài tập luyện tập

Hãy tự giải các bài tập sau để củng cố kiến thức:

  1. Tìm BCNN(6, 9)
  2. Tìm BCNN(10, 15, 20)
  3. Tìm BCNN(12, 18, 24)

Hy vọng bài học này đã giúp các em hiểu rõ hơn về Lý thuyết Bội chung và bội chung nhỏ nhất Toán 6 Cánh diều. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 6