Logo Header
  1. Môn Toán
  2. Giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hãy cùng khám phá lời giải chi tiết của bài tập này ngay dưới đây!

a) Giả sử G là một đồ thị với n đỉnh và (frac{{left( {n - 1} right)left( {n - 2} right)}}{2} + 2) cạnh. Sử dụng Định lí Ore, hãy chứng minh G có một chu trình Hamilton.

Đề bài

a) Giả sử G là một đồ thị với n đỉnh và \(\frac{{\left( {n - 1} \right)\left( {n - 2} \right)}}{2} + 2\) cạnh. Sử dụng Định lí Ore, hãy chứng minh G có một chu trình Hamilton.

b) Tìm một đồ thị với n đỉnh và \(\frac{{\left( {n - 1} \right)\left( {n - 2} \right)}}{2} + 1\) cạnh mà không có chu trình Hamilton.

Phương pháp giải - Xem chi tiếtGiải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Dựa vào kiến thức vừa học để làm

Lời giải chi tiết

a) Định lí Ore: Nếu G là một đồ thị có n đỉnh \(\left( {n \ge 3} \right)\) và mỗi cặp đỉnh không kề nhau đều có tổng bậc không nhỏ hơn n thì G có một chu trình Hamilton.

Ta có lí thuyết: Giả sử G là đồ thị đơn gồm n đỉnh và m cạnh. Nếu \(m \ge \;\frac{{{n^2} - 3n\; + 6}}{2}\) thì G là đồ thị có chu trình Hamilton.

Áp dụng vào bài toán ta được điều phải chứng minh.

b) Ta có đồ thị sau có 5 đỉnh, 7 cạnh và đồ thị không có chu trình Hamilton.

Giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc tìm điểm cực trị của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát. Trong bài này, hàm số thường được cho dưới dạng biểu thức toán học hoặc mô tả bằng lời.
  2. Tính đạo hàm: Sử dụng các quy tắc đạo hàm đã học để tính đạo hàm bậc nhất của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là điểm cực trị.
  4. Xác định loại điểm cực trị: Sử dụng dấu của đạo hàm bậc nhất hoặc đạo hàm bậc hai để xác định xem các điểm tìm được là điểm cực đại, điểm cực tiểu hay điểm uốn.
  5. Kết luận: Dựa vào kết quả phân tích để đưa ra kết luận về điểm cực trị của hàm số.

Lời giải chi tiết bài 2.12 trang 45

Để minh họa các bước trên, chúng ta sẽ cùng nhau giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước tính toán, phân tích và kết luận cụ thể. Ví dụ:)

Ví dụ: Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.

  • Bước 1: Tính đạo hàm: f'(x) = 3x2 - 6x
  • Bước 2: Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  • Bước 3: Xác định loại điểm cực trị:
    • Với x < 0, f'(x) > 0, hàm số đồng biến.
    • Với 0 < x < 2, f'(x) < 0, hàm số nghịch biến.
    • Với x > 2, f'(x) > 0, hàm số đồng biến.
    Vậy, x = 0 là điểm cực đại, x = 2 là điểm cực tiểu.
  • Bước 4: Kết luận: Hàm số f(x) đạt cực đại tại x = 0 với giá trị f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị f(2) = -2.

Ứng dụng của việc giải bài 2.12 trang 45

Việc giải bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức không chỉ giúp học sinh nắm vững kiến thức về đạo hàm mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác như:

  • Kinh tế: Tìm điểm tối đa lợi nhuận, điểm tối thiểu chi phí.
  • Vật lý: Xác định vận tốc, gia tốc, và các đại lượng liên quan đến chuyển động.
  • Kỹ thuật: Thiết kế các hệ thống tối ưu, đảm bảo hiệu suất cao nhất.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể luyện tập thêm với các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài giảng online hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết và giải đáp thắc mắc.

Tổng kết

Bài 2.12 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, bạn đã nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11