Logo Header
  1. Môn Toán
  2. Giải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn cách giải bài 2.6 trang 40 trong Chuyên đề học tập Toán 11 Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Cho đồ thị G như Hình 2.14.

Đề bài

Cho đồ thị G như Hình 2.14.

a) Tìm một đường đi từ đỉnh A đến đỉnh B.

b) G có liên thông không?

c) Trong G có chu trình sơ cấp nào không?

Giải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Một đồ thị được gọi là liên thông nếu hai đỉnh bất kì của đồ thị đều được nối với nhau bằng một đường đi.

Lời giải chi tiết

a) Một đường đi từ đỉnh A đến đỉnh B là: ADGB.

b) Ta thấy hai đỉnh bất kì của đồ thị đều liên thông (tức là đều có đường đi nối chúng), nên G liên thông.

c) Chu trình sơ cấp trong G là: AEHCFBGDA.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức: Tổng quan

Bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 2.6 trang 40

Bài tập 2.6 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit.
  • Tìm cực trị của hàm số: Yêu cầu tìm các điểm cực đại, cực tiểu của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Khảo sát sự biến thiên của hàm số: Yêu cầu xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của một đại lượng trong một khoảng cho trước.

Phương pháp giải bài tập 2.6 trang 40

Để giải quyết bài tập 2.6 trang 40 một cách hiệu quả, bạn có thể áp dụng các phương pháp sau:

  1. Nắm vững các khái niệm và quy tắc về đạo hàm: Đảm bảo bạn hiểu rõ định nghĩa đạo hàm, quy tắc tính đạo hàm của các hàm số cơ bản và quy tắc tính đạo hàm của hàm hợp.
  2. Sử dụng các công thức đạo hàm: Áp dụng các công thức đạo hàm đã học để tính đạo hàm của hàm số một cách nhanh chóng và chính xác.
  3. Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  4. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải quyết bài toán.
  5. Kiểm tra lại kết quả: Sau khi giải xong bài toán, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 2.6 trang 40

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại và cực tiểu của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
    Vậy hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập 2.6 trang 40, bạn có thể luyện tập thêm với các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, bạn cũng có thể tìm kiếm các bài giải trực tuyến trên các trang web học toán uy tín như giaitoan.edu.vn.

Lời khuyên

Để học tốt môn Toán 11, bạn cần:

  • Học bài đầy đủ và nắm vững kiến thức cơ bản.
  • Làm bài tập thường xuyên để rèn luyện kỹ năng.
  • Tìm kiếm sự giúp đỡ của giáo viên hoặc bạn bè khi gặp khó khăn.
  • Sử dụng các tài liệu tham khảo và các công cụ học tập trực tuyến.

Kết luận

Bài 2.6 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 11