Logo Header
  1. Môn Toán
  2. Giải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hãy cùng khám phá lời giải chi tiết và các kiến thức liên quan ngay sau đây!

Bạn Hoàng nói rằng, “hình chiếu đứng của một đoạn thẳng luôn có độ dài lớn hơn độ dài của đoạn thẳng đó”. Bạn Hoàng nói đúng hay sai? Vì sao?

Đề bài

Bạn Hoàng nói rằng, “hình chiếu đứng của một đoạn thẳng luôn có độ dài lớn hơn độ dài của đoạn thẳng đó”. Bạn Hoàng nói đúng hay sai? Vì sao?

Phương pháp giải - Xem chi tiếtGiải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Hình chiếu đứng (hướng chiếu từ mặt trước ra sau), hình chiếu cạnh (hướng chiếu từ trái sang), hình chiếu bằng (hướng chiếu từ trên nhìn xuống).

Lời giải chi tiết

Bạn Hoàng nói sai vì hình chiếu vuông góc luôn bảo toàn độ lớn của đoạn thẳng.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức: Tổng quan

Bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 3.4

Bài tập 3.4 thường có dạng yêu cầu học sinh:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm trong thực tế.

Lời giải chi tiết bài 3.4 trang 65

Để giải bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm các điểm dừng của hàm số (điểm mà đạo hàm cấp nhất bằng 0 hoặc không tồn tại).
  4. Bước 4: Lập bảng biến thiên của hàm số để xác định khoảng đơn điệu và cực trị.
  5. Bước 5: Kết luận về tính đơn điệu và cực trị của hàm số.

Ví dụ minh họa:

Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.

  1. Bước 1: Hàm số f(x) = x3 - 3x2 + 2.
  2. Bước 2: Đạo hàm cấp nhất: f'(x) = 3x2 - 6x.
  3. Bước 3: Giải phương trình f'(x) = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  4. Bước 4: Lập bảng biến thiên:

    x-∞02+∞
    f'(x)+-+
    f(x)NBĐCTC
  5. Bước 5: Hàm số đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Các lưu ý khi giải bài tập 3.4

  • Nắm vững các quy tắc tính đạo hàm.
  • Hiểu rõ ý nghĩa của đạo hàm trong việc khảo sát hàm số.
  • Lập bảng biến thiên một cách chính xác.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Để học tốt Toán 11 và giải bài tập 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 Kết nối tri thức.
  • Sách bài tập Toán 11 Kết nối tri thức.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 3.4 trang 65 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin giải bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11