Bài 2.8 trang 44 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết của bài tập này ngay dưới đây!
Có thể nào đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần?
Đề bài
Có thể nào đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần?
Phương pháp giải - Xem chi tiết
Quan sát hình 2.25 để làm
Lời giải chi tiết
Bằng cách loaị bỏ tất cả các chi tiết ngoại trừ các vùng đất và các cây cầu, sau đó thay thế mỗi vùng đất bằng một điểm và thay thế mỗi câu cầu nối hai vùng đất bằng một đoạn nối hai điểm, ta nhận được một đồ thị G có 6 đỉnh (tương ứng 6 vùng đất) và có 15 cạnh (tương ứng 15 cây cầu) như hình vẽ trên.
Ta thấy đồ thị G liên thông và đỉnh A có bậc 4, đỉnh B có bậc 3, đỉnh C có bậc 5, đỉnh D có bậc 8, đỉnh E có bậc 4, đỉnh F có bậc 6 hay mọi đỉnh của G đều có bậc chẵn, chỉ trừ B và C có bậc lẻ, do đó theo Định lí 2, ta suy ra đồ thị G có một đường đi Euler từ A đến B. Chẳng hạn, một đường đi Euler của đồ thị G là BAFCDADFDEFECDBC.
Vậy có thể đi dạo chơi qua các cây cầu trong Hình 2.25, mỗi cây cầu vừa đúng một lần.
Bài 2.8 trang 44 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến sự thay đổi của một đại lượng. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Một vật chuyển động theo phương trình s(t) = t^3 - 6t^2 + 9t + 2, với s(t) là quãng đường đi được sau thời gian t. Tìm vận tốc và gia tốc của vật tại thời điểm t = 2.)
Giải:
Ngoài bài 2.8, Chuyên đề học tập Toán 11 Kết nối tri thức còn nhiều bài tập khác yêu cầu vận dụng kiến thức về đạo hàm. Một số dạng bài tập thường gặp bao gồm:
Để giải quyết các bài tập này, bạn cần:
Để học tập hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:
Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để tìm kiếm lời giải chi tiết cho các bài tập khác và nâng cao kiến thức của bạn!
Hàm số | Đạo hàm |
---|---|
c (hằng số) | 0 |
x^n | nx^(n-1) |
sin(x) | cos(x) |
cos(x) | -sin(x) |