Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 1 trang 12, 13 Chuyên đề học tập Toán 11 - Kết nối tri thức. Bài viết này sẽ giúp các em học sinh nắm vững kiến thức, rèn luyện kỹ năng giải bài tập và đạt kết quả tốt trong môn Toán.
Chúng tôi cung cấp các bước giải bài tập rõ ràng, kèm theo giải thích chi tiết để các em có thể tự học và hiểu sâu sắc vấn đề.
Cầu Ponte Sisto in hình dưới dòng sông Tiber, tạo nên một hình ảnh có tính đối xứng trục
Xét mặt phẳng tọa độ Oxy (H.1.15). Trong các khẳng định sau, chọn các khẳng định đúng.
a) Phép đối xứng trục Ox biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {x;{\rm{ }}-{\rm{ }}y} \right).\)
b) Phép đối xứng trục Oy biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {-{\rm{ }}x;{\rm{ }}y} \right).\)
c) Phép đối xứng trục Ox biến A(1; 2) thành điểm \(A'\left( {-{\rm{ }}1;{\rm{ }}-{\rm{ }}2} \right).\)
Phương pháp giải:
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = - {y_M}\end{array} \right.\)
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = - {x_M}\\{y_{M'}} = {y_M}\end{array} \right.\)
Lời giải chi tiết:
Từ hình vẽ ta thấy:
+) Phép đối xứng trục Ox biến mỗi điểm M(x; y) thành điểm M1(x; – y).
+) Phép đối xứng trục Oy biến mỗi điểm M(x; y) thành điểm M2(– x; y).
Do đó, phép đối xứng trục Ox biến điểm A(1; 2) thành A'(1; – 2).
Vậy các khẳng định a), b) đúng và khẳng định c) sai.
Cầu Ponte Sisto in hình dưới dòng sông Tiber, tạo nên một hình ảnh có tính đối xứng trục.
a) Hãy chỉ ra trục đối xứng của hình ảnh đó.
b) Có thể đếm được bao nhiêu hình bóng điện dưới sông? Mỗi hình đó là ảnh dưới sông của bóng điện nào trên cầu?
Phương pháp giải:
Có một đường thẳng chia hình thành hai phần bằng nhau mà nếu “gấp” hình theo đường thẳng thì hai phần đó “chồng khít” lên nhau. Được gọi là hình có trục đối xứng và đường thẳng là trục đối xứng của nó.
Lời giải chi tiết:
a) Đường thẳng giao bởi cầu và mặt nước trên dòng sông là trục đối xứng của hình ảnh đó (đường màu xanh trong hình vẽ).
b) Có thể đếm được 5 bóng điện dưới dòng sông. Mỗi hình đó là ảnh dưới sông của bóng điện tương ứng với từng số thứ tự trên cầu như ảnh.
Cầu Ponte Sisto in hình dưới dòng sông Tiber, tạo nên một hình ảnh có tính đối xứng trục.
a) Hãy chỉ ra trục đối xứng của hình ảnh đó.
b) Có thể đếm được bao nhiêu hình bóng điện dưới sông? Mỗi hình đó là ảnh dưới sông của bóng điện nào trên cầu?
Phương pháp giải:
Có một đường thẳng chia hình thành hai phần bằng nhau mà nếu “gấp” hình theo đường thẳng thì hai phần đó “chồng khít” lên nhau. Được gọi là hình có trục đối xứng và đường thẳng là trục đối xứng của nó.
Lời giải chi tiết:
a) Đường thẳng giao bởi cầu và mặt nước trên dòng sông là trục đối xứng của hình ảnh đó (đường màu xanh trong hình vẽ).
b) Có thể đếm được 5 bóng điện dưới dòng sông. Mỗi hình đó là ảnh dưới sông của bóng điện tương ứng với từng số thứ tự trên cầu như ảnh.
Xét mặt phẳng tọa độ Oxy (H.1.15). Trong các khẳng định sau, chọn các khẳng định đúng.
a) Phép đối xứng trục Ox biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {x;{\rm{ }}-{\rm{ }}y} \right).\)
b) Phép đối xứng trục Oy biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {-{\rm{ }}x;{\rm{ }}y} \right).\)
c) Phép đối xứng trục Ox biến A(1; 2) thành điểm \(A'\left( {-{\rm{ }}1;{\rm{ }}-{\rm{ }}2} \right).\)
Phương pháp giải:
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = - {y_M}\end{array} \right.\)
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = - {x_M}\\{y_{M'}} = {y_M}\end{array} \right.\)
Lời giải chi tiết:
Từ hình vẽ ta thấy:
+) Phép đối xứng trục Ox biến mỗi điểm M(x; y) thành điểm M1(x; – y).
+) Phép đối xứng trục Oy biến mỗi điểm M(x; y) thành điểm M2(– x; y).
Do đó, phép đối xứng trục Ox biến điểm A(1; 2) thành A'(1; – 2).
Vậy các khẳng định a), b) đúng và khẳng định c) sai.
Mục 1 của Chuyên đề học tập Toán 11 - Kết nối tri thức thường tập trung vào một khái niệm hoặc kỹ năng toán học cụ thể. Việc nắm vững kiến thức trong mục này là nền tảng quan trọng để giải quyết các bài tập phức tạp hơn trong chương trình học. Bài viết này sẽ đi sâu vào phân tích từng bài tập trong mục 1 trang 12, 13, cung cấp lời giải chi tiết và các lưu ý quan trọng.
Bài tập này yêu cầu chúng ta… (Mô tả yêu cầu bài tập). Để giải bài tập này, chúng ta cần áp dụng kiến thức về… (Liệt kê các kiến thức liên quan). Các bước giải như sau:
Kết quả cuối cùng là… (Kết quả bài tập).
Bài tập này liên quan đến… (Mô tả yêu cầu bài tập). Để giải quyết bài toán này, chúng ta cần sử dụng công thức… (Liệt kê các công thức liên quan). Quá trình giải:
Vậy đáp án của bài tập là… (Kết quả bài tập).
Bài tập này đòi hỏi chúng ta phải kết hợp kiến thức từ… (Liệt kê các kiến thức liên quan). Cách tiếp cận bài toán:
Bước | Thực hiện | Giải thích |
---|---|---|
1 | … | … |
2 | … | … |
3 | … | … |
Do đó, kết quả của bài tập là… (Kết quả bài tập).
Khi giải các bài tập trong mục 1 trang 12, 13 Chuyên đề học tập Toán 11 - Kết nối tri thức, các em cần lưu ý những điều sau:
Kiến thức và kỹ năng được học trong mục 1 trang 12, 13 Chuyên đề học tập Toán 11 - Kết nối tri thức có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau của toán học, chẳng hạn như:
Hy vọng rằng bài viết này đã cung cấp cho các em những lời giải chi tiết và hữu ích cho mục 1 trang 12, 13 Chuyên đề học tập Toán 11 - Kết nối tri thức. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!