Bài 2.15 trang 49 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết của bài 2.15 này ngay dưới đây!
Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.
Đề bài
Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.
Phương pháp giải - Xem chi tiết
Giải bài tán bằng thuật toán tìm đường đi ngắn nhất: Ta xuất phát từ đỉnh A và di chuyển theo các cạnh của đồ thị. Với mỗi đỉnh V, ta gắn một số \(I(V)\) là khoảng cách ngắn nhất để đi từ A đến V, gọi là nhãn vĩnh viễn của đỉnh V. Như vậy, để tìm độ dài của đường đi ngắn nhất nối A với F, ta cần tìm \(I(F)\).
Lời giải chi tiết
Đầu tiên, ta gắn nhãn đỉnh A là I(A) = 0 và gắn cho ba đỉnh kề với A là B, F và D các nhãn tạm thời I(A) + 4, I(A) + 3 và I(A) + 20. Chọn số nhỏ nhất trong chúng và viết I(F) = 3. Đỉnh F bây giờ được gắn nhãn vĩnh viễn là 3.
Tiếp theo, ta gắn cho các đỉnh kề với F là B, C và E các nhãn tạm thời I(F) + 6, I(F) + 5 và I(F) + 15 (B hiện có hai nhãn tạm thời là 4 và 9). Nhãn tạm thời nhỏ nhất trong các nhãn đã gán (ở B, C, E) hiện nay là 4 (tại B), nên ta viết I(B) = 4. Đỉnh B được gắn nhãn vĩnh viễn là 4.
Bây giờ ta xét các đỉnh kề với B (mà chưa được gắn nhãn vĩnh viễn) là C và E. Ta gắn cho đỉnh C nhãn tạm thời là I(B) + 11 (hiện C có hai nhãn tạm thời là 8 và 15), gắn cho đỉnh E nhãn tạm thời là I(B) + 9 (E hiện có hai nhãn tạm thời là 18 và 13. Nhãn tạm thời nhỏ nhất bây giờ là 8 (tại C), do đó ta viết I(C) = 8.
Bây giờ ta xét các đỉnh kề với C (mà chưa được gắn nhãn vĩnh viễn) là E và D. Ta gắn nhãn cho đỉnh E tạm thời là I(C) + 2 (hiện E có ba nhãn tạm thời là 18, 13 và 10), gắn cho đỉnh D nhãn tạm thời là I(C) + 10. Nhãn tạm thời nhỏ nhất bây giờ là 10 (tại E), do đó ta viết I(E) = 10.
Xét đỉnh kề với E là D, ta gắn cho D nhãn tạm thời I(E) + 7 (hiện D có hai nhãn tạm thời là 18 và 17). Vậy đỉnh D sẽ được gắn nhãn vĩnh viễn là 17 hay I(D) = 17.
Vì I(D) = 17 nên đường đi ngắn nhất từ A đến D có độ dài là 17.
Để tìm một đường đi ngắn nhất từ A đến D như vậy, ta sẽ lần ngược từ điểm cuối D. Ta chỉ cần giới hạn ở việc xét những cạnh mà độ dài là hiệu của các nhãn gắn tại đầu các mút của nó, đó là DE, EC, CF và FA (do I(D) – I(E) = 17 = 10 = 7, I(E) – I(C) = 10 – 8 = 2, I(C) – I(F) = 8 – 3 = 5 và I(F) – I(A) = 3 – 0 = 3).
Khi đó ta có thể kết luận, đường đi ngắn nhất từ A đến D phải đi qua các cạnh DE, EC, CF và FA.
Vậy, đường đi ngắn nhất (trong trường hợp này là duy nhất) từ A đến D là
\(A \to F \to C \to E \to D.\)
Trước khi đi vào lời giải, chúng ta cùng xem lại đề bài của bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức:
(Đề bài cụ thể của bài 2.15 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tìm các điểm cực trị của hàm số.)
Để giải bài 2.15 trang 49, chúng ta cần thực hiện các bước sau:
f'(x) = 3x^2 - 6x
Giải phương trình f'(x) = 0, ta được:
3x^2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | NB | ĐC | TC |
Dựa vào bảng biến thiên, ta kết luận:
Việc tính đạo hàm cấp một là bước quan trọng để xác định các điểm nghi ngờ là cực trị. Sau đó, việc giải phương trình f'(x) = 0 giúp ta tìm ra các giá trị x mà tại đó đạo hàm bằng 0, tức là các điểm dừng. Tiếp theo, chúng ta sử dụng bảng biến thiên để xác định tính chất của hàm số tại các điểm dừng này. Dấu của f'(x) khi đi qua các điểm dừng sẽ cho biết hàm số đồng biến hay nghịch biến, từ đó xác định được điểm cực đại và cực tiểu.
Để hiểu sâu hơn về ứng dụng của đạo hàm trong việc khảo sát hàm số, bạn có thể tham khảo thêm các kiến thức sau:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập điển hình về ứng dụng của đạo hàm trong việc khảo sát hàm số. Hy vọng với lời giải chi tiết và những giải thích trên, bạn đã nắm vững kiến thức và có thể tự tin giải các bài tập tương tự. Chúc bạn học tập tốt!