Bài 2.13 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng khám phá lời giải chi tiết của bài tập này ngay dưới đây!
Với giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Euler? Có một đường đi Euler?
Đề bài
Với giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Euler? Có một đường đi Euler?
Phương pháp giải - Xem chi tiết
Trong đồ thị, một đường đi được gọi là đường đi Euler nếu đường đi đó đi qua tất cả các cạnh của đồ thị, mỗi cạnh đúng 1 lần.
Nếu chu trình là đường đi Euler thì chu trình đo được gọi là chu trình Euler.
Lời giải chi tiết
Đồ thị đầy đủ \({K_n}\) có \(n{\rm{ }} \ge {\rm{ }}2,{\rm{ }}n\; \in \;\mathbb{N}.\)
Đồ thị đầy đủ \({K_n}\) là đồ thị liên thông.
Mỗi đỉnh của \({K_n}\) đều có bậc là n – 1.
+) Theo định lí Euler, Kn có chu trình Euler khi Kn liên thông (đã thỏa mãn) và mọi đỉnh của Kn đều có bậc chẵn, điều này có nghĩa để Kn có một chu trình Euler thì n – 1 phải là số chẵn hay n phải là số lẻ, tức là \(n{\rm{ }} = {\rm{ }}2k{\rm{ }} + {\rm{ }}1{\rm{ }}(k\; \in \;{\mathbb{N}^*}).\) Vậy với \(\;n{\rm{ }} = {\rm{ }}2k{\rm{ }} + {\rm{ }}1{\rm{ }}(k\; \in \;{\mathbb{N}^*})\) thì đồ thị đầy đủ Kn có một chu trình Euler.
+) Đồ thị Kn có một đường đi Euler từ A đến B khi và chỉ khi Kn liên thông và mọi đỉnh của Kn đều có bậc chẵn, chỉ trừ A và B có bậc lẻ. Mà mọi đỉnh của Kn đều có bậc là n – 1, nghĩa là mọi đỉnh của Kn đều có bậc chẵn hoặc đều có bậc lẻ.
- Với n = 2, ta có K2 có 2 đỉnh đều có bậc là 1 (là bậc lẻ) nên ta có đường đi Euler từ đỉnh này qua đỉnh còn lại.
- Với n > 2, n ∈ ℕ* thì mọi đỉnh của Kn đều có bậc cùng chẵn hoặc cùng lẻ lớn hơn 2, do đó không thỏa mãn điều kiện để Kn có đường đi Euler.
Vậy đồ thị đầy đủ Kn có một đường đi Euler khi n = 2.
Bài 2.13 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc tìm điểm cực trị của hàm số. Bài toán này thường xuất hiện trong các đề thi và kiểm tra, do đó việc nắm vững phương pháp giải là vô cùng quan trọng.
Trước khi đi vào giải bài, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, đề bài sẽ cung cấp một hàm số và yêu cầu tìm điểm cực trị, giá trị cực đại, giá trị cực tiểu của hàm số đó. Đôi khi, đề bài còn yêu cầu khảo sát sự biến thiên của hàm số dựa trên đạo hàm.
Để giải bài 2.13 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức, chúng ta cần thực hiện các bước sau:
(Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước tính toán cụ thể và giải thích rõ ràng. Ví dụ:)
Giả sử hàm số là f(x) = x3 - 3x2 + 2.
Vậy hàm số đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Để hiểu rõ hơn về phương pháp giải, chúng ta hãy xem xét một ví dụ minh họa khác. Ví dụ, cho hàm số f(x) = x4 - 4x2 + 3. Hãy tìm điểm cực đại, điểm cực tiểu của hàm số này.
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự sau:
Bài 2.13 trang 45 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã hiểu rõ phương pháp giải bài tập này và có thể tự tin giải các bài tập tương tự.