Logo Header
  1. Môn Toán
  2. Giải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hãy cùng khám phá lời giải chi tiết của bài tập này ngay dưới đây!

Ở Hình 1.48, A', B', C', D', E' tương ứng là trung điểm của các đoạn thẳng IA, IB, IC, ID, IE. Hỏi năm điểm đó có thuộc một đường tròn hay không? Vì sao?

Đề bài

Ở Hình 1.48, A', B', C', D', E' tương ứng là trung điểm của các đoạn thẳng IA, IB, IC, ID, IE. Hỏi năm điểm đó có thuộc một đường tròn hay không? Vì sao?

Giải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Quan sát hình 1.48 và dựa vào kiến thức về phép vị tự: Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)

Lời giải chi tiết

Vì A', B', C', D', E' tương ứng là trung điểm của các đoạn thẳng IA, IB, IC, ID, IE nên ta suy ra \(\overrightarrow {IA'} = \frac{1}{2}\overrightarrow {IA} ;\,\overrightarrow {IB'} = \frac{1}{2}\overrightarrow {IB} ;\,\overrightarrow {IC'} = \frac{1}{2}\overrightarrow {IC} ;\,\overrightarrow {ID'} = \frac{1}{2}\overrightarrow {ID} ;\,\,\overrightarrow {IE'} = \frac{1}{2}\overrightarrow {IE} \). Do đó, A', B', C', D', E' tương ứng là ảnh của các điểm A, B, C, D, E qua phép vị tự tâm I, tỉ số \(\frac{1}{2}\).

Từ Hình 1.48, ta thấy các điểm A, B, C, D, E cùng thuộc một đường tròn. Vậy các điểm A', B', C', D', E' đều cùng thuộc một đường tròn là ảnh của đường tròn đi qua 5 điểm A, B, C, D, E qua phép vị tự tâm I, tỉ số \(\frac{1}{2}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng toán học. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức: Tổng quan

Bài 1.22 trang 29 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như đạo hàm, cực trị, và khoảng đơn điệu của hàm số.

Nội dung bài tập 1.22

Bài tập 1.22 thường có dạng yêu cầu học sinh:

  • Xác định đạo hàm của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số (nếu cần).

Lời giải chi tiết bài 1.22 trang 29

Để giải bài 1.22 trang 29, ta thực hiện các bước sau:

  1. Bước 1: Xác định tập xác định của hàm số. Tập xác định là tập hợp tất cả các giá trị của x mà hàm số có nghĩa.
  2. Bước 2: Tính đạo hàm của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm f'(x).
  3. Bước 3: Tìm các điểm cực trị của hàm số. Giải phương trình f'(x) = 0 để tìm các điểm nghiệm. Sau đó, xét dấu của f'(x) để xác định loại cực trị (cực đại hoặc cực tiểu).
  4. Bước 4: Xác định khoảng đồng biến, nghịch biến của hàm số. Dựa vào dấu của f'(x) để xác định khoảng đồng biến (f'(x) > 0) và khoảng nghịch biến (f'(x) < 0).
  5. Bước 5: Vẽ đồ thị hàm số (nếu cần). Sử dụng các thông tin đã tìm được để vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta sẽ áp dụng các bước trên để giải bài tập:

  1. Bước 1: Tập xác định của hàm số là R.
  2. Bước 2: f'(x) = 3x2 - 6x.
  3. Bước 3: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2. Xét dấu của f'(x), ta thấy:
    • f'(x) > 0 khi x < 0 hoặc x > 2.
    • f'(x) < 0 khi 0 < x < 2.
    Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
  4. Bước 4: Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).

Mẹo giải bài tập

Để giải bài tập 1.22 trang 29 hiệu quả, bạn nên:

  • Nắm vững các công thức tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giáo khoa, và các trang web học toán uy tín.

Tầm quan trọng của việc giải bài tập 1.22

Việc giải bài tập 1.22 trang 29 không chỉ giúp bạn hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm mà còn rèn luyện kỹ năng giải quyết vấn đề, tư duy logic, và khả năng phân tích. Đây là những kỹ năng quan trọng không chỉ trong môn Toán mà còn trong nhiều lĩnh vực khác của cuộc sống.

Kết luận

Bài 1.22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng và hữu ích. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11