Logo Header
  1. Môn Toán
  2. Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Hãy cùng khám phá lời giải chi tiết và các kiến thức liên quan ngay sau đây!

Hãy vẽ một đồ thị có 4 đỉnh và:

Đề bài

Hãy vẽ một đồ thị có 4 đỉnh và:

a) có đúng hai đỉnh cùng bậc và bậc là 1;

b) có đúng hai đỉnh cùng bậc và bậc là 2.

Phương pháp giải - Xem chi tiếtGiải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Bậc của một đỉnh A trong đồ thị G là số cạnh của đồ thị nhận đỉnh A làm đầu mút, kí hiệu là \(d(A)\)

Lời giải chi tiết

a) Đồ thị có 4 đỉnh và có đúng hai đỉnh cùng bậc và bậc là 1.

Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Ở đây, đỉnh A và C đều có bậc 1, trong khi đỉnh D có bậc 2, còn đỉnh B có bậc 0.

b) Đồ thị có 4 đỉnh và có đúng hai đỉnh cùng bậc và bậc là 2.

Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 3

Ở đây, đỉnh B và C đều có bậc 2, trong khi đỉnh D có bậc 3, còn đỉnh A có bậc 1.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức: Tổng quan

Bài 2.2 trang 40 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế liên quan đến sự biến thiên của hàm số. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như đạo hàm, điểm cực trị, khoảng đồng biến, nghịch biến và cách xác định chúng.

Nội dung bài tập 2.2 trang 40

Bài tập 2.2 thường có dạng yêu cầu học sinh:

  • Tính đạo hàm của hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán ứng dụng liên quan đến sự biến thiên của hàm số.

Lời giải chi tiết bài 2.2 trang 40

Để giải bài 2.2 trang 40, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Tính đạo hàm f'(x) của hàm số f(x). Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  2. Bước 2: Tìm các điểm cực trị. Giải phương trình f'(x) = 0 để tìm các điểm nghiệm. Các điểm nghiệm này là các điểm cực trị của hàm số.
  3. Bước 3: Xác định khoảng đồng biến, nghịch biến. Xét dấu đạo hàm f'(x) trên các khoảng xác định của hàm số. Nếu f'(x) > 0 thì hàm số đồng biến trên khoảng đó, nếu f'(x) < 0 thì hàm số nghịch biến trên khoảng đó.
  4. Bước 4: Vẽ đồ thị hàm số. Dựa vào các thông tin về đạo hàm, điểm cực trị và khoảng đồng biến, nghịch biến để vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta sẽ giải bài 2.2 trang 40 cho hàm số này:

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2. Vậy hàm số có hai điểm cực trị là x = 0 và x = 2.
  3. Xác định khoảng đồng biến, nghịch biến:
    • Khi x < 0, f'(x) > 0, hàm số đồng biến.
    • Khi 0 < x < 2, f'(x) < 0, hàm số nghịch biến.
    • Khi x > 2, f'(x) > 0, hàm số đồng biến.

Mẹo giải bài tập

Để giải bài tập 2.2 trang 40 hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo và lời giải trên mạng.

Ứng dụng của bài tập

Việc giải bài tập 2.2 trang 40 không chỉ giúp bạn nắm vững kiến thức về đạo hàm mà còn có ứng dụng thực tế trong nhiều lĩnh vực khác nhau, như:

  • Kinh tế: Phân tích chi phí, lợi nhuận, doanh thu.
  • Vật lý: Tính vận tốc, gia tốc, lực.
  • Kỹ thuật: Thiết kế các hệ thống tự động.

Kết luận

Bài 2.2 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên đây, bạn sẽ tự tin giải quyết bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11